Mercurial > hg > Members > kono > Proof > category
changeset 295:26e8f0227ebd
limit equation done.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 25 Sep 2013 20:24:39 +0900 |
parents | db4ecbdbf9e9 |
children | bba60d843462 |
files | pullback.agda |
diffstat | 1 files changed, 33 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Wed Sep 25 19:54:35 2013 +0900 +++ b/pullback.agda Wed Sep 25 20:24:39 2013 +0900 @@ -512,8 +512,39 @@ limit1 a t = A [ FMap U (limit limitb (FObj F a) (tF a t )) o TMap η a ] t0f=t1 : {a : Obj A} {t : NTrans I A (K A I a) (U ○ Γ)} {i : Obj I} → A [ A [ TMap ta i o limit1 a t ] ≈ TMap t i ] - t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in {!!} + t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin + TMap ta i o limit1 a t + ≈⟨⟩ + FMap U ( TMap tb i ) o ( FMap U (limit limitb (FObj F a) (tF a t )) o TMap η a ) + ≈⟨ assoc ⟩ + ( FMap U ( TMap tb i ) o FMap U (limit limitb (FObj F a) (tF a t ))) o TMap η a + ≈↑⟨ car ( distr U ) ⟩ + FMap U ( B [ TMap tb i o limit limitb (FObj F a) (tF a t ) ] ) o TMap η a + ≈⟨ car ( fcong U ( t0f=t limitb ) ) ⟩ + FMap U (TMap (tF a t) i) o TMap η a + ≈⟨⟩ + FMap U ( B [ TMap ε (FObj Γ i) o FMap F (TMap t i) ] ) o TMap η a + ≈⟨ car ( distr U ) ⟩ + ( FMap U ( TMap ε (FObj Γ i)) o FMap U ( FMap F (TMap t i) )) o TMap η a + ≈↑⟨ assoc ⟩ + FMap U ( TMap ε (FObj Γ i) ) o ( FMap U ( FMap F (TMap t i) ) o TMap η a ) + ≈⟨ cdr ( nat η ) ⟩ + FMap U (TMap ε (FObj Γ i)) o ( TMap η (FObj U (FObj Γ i)) o FMap (identityFunctor {_} {_} {_} {A}) (TMap t i) ) + ≈⟨ assoc ⟩ + ( FMap U (TMap ε (FObj Γ i)) o TMap η (FObj U (FObj Γ i))) o TMap t i + ≈⟨ car ( IsAdjunction.adjoint1 ( Adjunction.isAdjunction adj ) ) ⟩ + id1 A (FObj (U ○ Γ) i) o TMap t i + ≈⟨ idL ⟩ + TMap t i + ∎ limit-uniqueness1 : {a : Obj A} {t : NTrans I A (K A I a) (U ○ Γ)} {f : Hom A a (FObj U lim)} → ({i : Obj I} → A [ A [ TMap ta i o f ] ≈ TMap t i ]) → A [ limit1 a t ≈ f ] - limit-uniqueness1 {a} {t} {f} lim=t = let open ≈-Reasoning (A) in {!!} + limit-uniqueness1 {a} {t} {f} lim=t = let open ≈-Reasoning (A) in begin + limit1 a t + ≈⟨⟩ + FMap U (limit limitb (FObj F a) (tF a t )) o TMap η a + ≈⟨ {!!} ⟩ + f + ∎ +