changeset 749:274f6a03e11c

yellow removed
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 10 Dec 2017 15:16:24 +0900
parents a83145326258
children b45587696acf
files monad→monoidal.agda
diffstat 1 files changed, 11 insertions(+), 9 deletions(-) [+]
line wrap: on
line diff
--- a/monad→monoidal.agda	Sun Dec 10 14:30:11 2017 +0900
+++ b/monad→monoidal.agda	Sun Dec 10 15:16:24 2017 +0900
@@ -90,6 +90,8 @@
           assocφ : { x y z : Obj Sets } { a : FObj F x } { b : FObj F y }{ c : FObj F z }
              → φ (a , φ (b , c)) ≡ FMap F (Iso.≅→ (mα-iso isM)) (φ (φ (a , b) , c))
           assocφ = {!!}
+          proj1 :  {a : Obj Sets} → _*_ {l} {l} a One → a
+          proj1 =  proj₁
           idrφ : {a : Obj Sets } { x : FObj F a } → FMap F (Iso.≅→ (mρ-iso isM)) (φ (x , unit)) ≡ x
           idrφ {a} {x} =  monoidal.≡-cong ( λ h → h x ) ( begin
                   ( λ x → FMap F (Iso.≅→ (mρ-iso isM)) (φ (x , unit)) )
@@ -99,13 +101,13 @@
                   FMap F proj₁ o  (μ (a * One ) o FMap F (λ f → ( FMap F (λ g → f , g) ((η One) OneObj))))
              ≈⟨⟩
                   FMap F proj₁ o  (μ (a * One ) o FMap F (λ f → ( FMap F (λ g → f , g) o η One ) OneObj ))
-             ≈⟨ cdr ( cdr ( fcong F  ( begin
+             ≈⟨ cdr {_} {_} {_} {_} {_} {FMap F  proj₁} ( cdr {_} {_} {_} {_} {_} {μ (a * One ) } ( fcong F  ( begin
                    (λ f → ( FMap F (λ g → f , g) o η One ) OneObj )
                  ≈⟨  monoidal.≡-cong ( λ h →  λ f → (h f) OneObj ) (extensionality Sets (λ f → (
                       begin
                          FMap F (λ g → f , g) o η One 
                       ≈⟨ nat ( Monad.η monad ) ⟩
-                          η  ( a * One) o FMap identityFunctor (λ g → f , g) 
+                          η  ( a * One) o FMap (identityFunctor {_} {_} {_} {Sets {l}} )(λ g → f , g) 
                       ≈⟨⟩
                          η (a * One) o ( λ g → ( f , g ) )

@@ -116,16 +118,16 @@

                 ))) ⟩
                   FMap F proj₁ o  (μ (a * One ) o FMap F ( η (a * One  ) o ( λ f → ( f , OneObj  ))))
-             ≈⟨ cdr ( cdr ( distr F )) ⟩
-                  FMap F proj₁ o  (μ (a * One ) o ( FMap F ( η (a * One  )) o FMap F ( λ f → ( f , OneObj  ))))
-             ≈⟨ cdr assoc ⟩
-                  FMap F proj₁ o  ( ( μ (a * One ) o  FMap F ( η (a * One  ))) o FMap F ( λ f → ( f , OneObj  )))
-             ≈⟨ cdr  ( car ( IsMonad.unity2 (Monad.isMonad monad )))   ⟩
+             ≈⟨ cdr {_} {_} {_} {_} {_} {FMap F proj₁} ( cdr {_} {_} {_} {_} {_} {μ (a * One )} ( distr F )) ⟩
+                  FMap F proj1 o  (μ (a * One ) o ( FMap F ( η (a * One  )) o FMap F ( λ f → ( f , OneObj  ))))
+             ≈⟨ cdr {_} {_} {_} {_} {_} {FMap F proj₁} ( assoc {_} {_} {_} {_} { μ (a * One )} { FMap F ( η (a * One  ))} {FMap F ( λ f → ( f , OneObj  ))}  ) ⟩
+                  FMap F proj1 o  ( ( μ (a * One ) o  FMap F ( η (a * One  ))) o FMap F ( λ f → ( f , OneObj  )))
+             ≈⟨ cdr {_} {_} {_} {_} {_} {FMap F proj₁} ( car ( IsMonad.unity2 (Monad.isMonad monad )))   ⟩
                   FMap F proj₁ o  ( id1 Sets (FObj F (a * One)) o FMap F ( λ f → ( f , OneObj  )))
-             ≈⟨ cdr idL ⟩
+             ≈⟨ cdr {_} {_} {_} {_} {_} {FMap F proj₁} idL ⟩
                   FMap F proj₁ o   FMap F ( λ f → ( f , OneObj  ))
              ≈↑⟨ distr F  ⟩
-                  FMap F ( proj₁ o   ( λ f → ( f , OneObj  )))
+                  FMap F ( ( λ ( x : _*_ {l} {l} a One ) → proj₁ x ) o   ( λ f → ( f , OneObj  )))
              ≈⟨⟩
                   FMap F (id1 Sets a )
              ≈⟨ IsFunctor.identity ( Functor.isFunctor F ) ⟩