Mercurial > hg > Members > kono > Proof > category
changeset 271:28278175d696
limit2adjoint done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 22 Sep 2013 20:40:17 +0900 |
parents | 8ba03259a177 |
children | 5f2b8a5cc115 |
files | pullback.agda |
diffstat | 1 files changed, 13 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Sun Sep 22 19:49:38 2013 +0900 +++ b/pullback.agda Sun Sep 22 20:40:17 2013 +0900 @@ -153,8 +153,8 @@ limit : ( a : Obj A ) → ( t : NTrans I A ( K I a ) Γ ) → Hom A a a0 t0f=t : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → ∀ { i : Obj I } → A [ A [ TMap t0 i o limit a t ] ≈ TMap t i ] - limit-uniqueness : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → { f : Hom A a a0 } → ∀ ( i : Obj I ) → - A [ A [ TMap t0 i o f ] ≈ TMap t i ] → A [ limit a t ≈ f ] + limit-uniqueness : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → { f : Hom A a a0 } → ( ∀ { i : Obj I } → + A [ A [ TMap t0 i o f ] ≈ TMap t i ] ) → A [ limit a t ≈ f ] A0 : Obj A A0 = a0 T0 : NTrans I A ( K I a0 ) Γ @@ -185,7 +185,7 @@ A [ A [ iso-l I Γ a0 a0' t0 t0' lim lim' o iso-r I Γ a0 a0' t0 t0' lim lim' ] ≈ id1 A a0' ] iso-lr I Γ a0 a0' t0 t0' lim lim' {i} = let open ≈-Reasoning (A) in begin limit lim' a0 t0 o limit lim a0' t0' - ≈↑⟨ limit-uniqueness lim' i ( begin + ≈↑⟨ limit-uniqueness lim' ( λ {i} → ( begin TMap t0' i o ( limit lim' a0 t0 o limit lim a0' t0' ) ≈⟨ assoc ⟩ ( TMap t0' i o limit lim' a0 t0 ) o limit lim a0' t0' @@ -193,9 +193,9 @@ TMap t0 i o limit lim a0' t0' ≈⟨ t0f=t lim ⟩ TMap t0' i - ∎ ) ⟩ + ∎) ) ⟩ limit lim' a0' t0' - ≈⟨ limit-uniqueness lim' i idR ⟩ + ≈⟨ limit-uniqueness lim' idR ⟩ id a0' ∎ @@ -244,7 +244,7 @@ _*' = λ {b} {a} k → limit (lim b {a0 b} {t0 b} ) a k ; iscoUniversalMapping = record { couniversalMapping = λ{ b a f} → couniversalMapping1 {b} {a} {f} ; - couniquness = λ {b a f g } → couniquness1 {b} {a} {f} {g} + couniquness = couniquness2 } } where couniversalMapping1 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} → @@ -256,12 +256,15 @@ ≈⟨ t0f=t (lim b) ⟩ TMap f i -- i comes from ∀{i} → B [ TMap f i ≈ TMap g i ] ∎ - couniquness1 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} {g : Hom A a (A0 (lim b {a0 b} {t0 b} ))} → - A ^ I [ A ^ I [ T0 (lim b {a0 b} {t0 b} ) o FMap (KI I) g ] ≈ f ] → A [ limit (lim b {a0 b} {t0 b} ) a f ≈ g ] - couniquness1 {b} {a} {f} {g} lim-g=f = let open ≈-Reasoning (A) in begin + couniquness2 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} {g : Hom A a (A0 (lim b {a0 b} {t0 b} ))} → + ( ∀ { i : Obj I } → + A [ A [ TMap (T0 (lim b {a0 b} {t0 b} )) i o TMap ( FMap (KI I) g) i ] ≈ TMap f i ] ) → A [ limit (lim b {a0 b} {t0 b} ) a f ≈ g ] + couniquness2 {b} {a} {f} {g} lim-g=f = let open ≈-Reasoning (A) in begin limit (lim b {a0 b} {t0 b} ) a f - ≈⟨ limit-uniqueness ( lim b ) ? lim-g=f ⟩ + ≈⟨ limit-uniqueness ( lim b {a0 b} {t0 b} ) lim-g=f ⟩ g ∎ + +