Mercurial > hg > Members > kono > Proof > category
changeset 561:2c0e168c832e
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 10 Apr 2017 10:48:50 +0900 |
parents | ba9c6dbbe6cb |
children | 14483d9d604c |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 9 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Mon Apr 10 10:14:53 2017 +0900 +++ b/SetsCompleteness.agda Mon Apr 10 10:48:50 2017 +0900 @@ -236,7 +236,7 @@ comm2 {a} {x} t f = ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) ) comm3 : { a : Obj Sets } {x : a } {i j : Obj C} (t : NTrans C Sets (K Sets C a) Γ) (f : I → I ) → Sets [ Sets [ (λ x₁ → ΓMap s Γ f (snmap x₁ i)) o setprod t ] ≈ Sets [ (λ x₁ → snmap x₁ j) o setprod t ] ] - comm3 {a} {x} t f = {!!} + comm3 {a} {x} t f = IsNTrans.commute (isNTrans t ) limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (snequ (ΓObj s Γ) (ΓMap s Γ)) limit1 a t = λ ( x : a ) → record { snequ1 = λ {i} {j} f → k ( setprod t ) (comm3 {a} {x} t f ) x @@ -256,7 +256,8 @@ ≡⟨⟩ record { snequ1 = λ {i} {j} f' → k ( setprod t ) (comm3 {a} {x} t f' ) x } ≡⟨ ≡cong ( λ ff → record { snequ1 = λ {i} {j} f' → ff i j f' }) ( - extensionality Sets ( λ i → extensionality Sets ( λ j → extensionality Sets ( λ f' → k-cong {i} {j} f' x + extensionality Sets ( λ i → extensionality Sets ( λ j → extensionality Sets ( λ f' + → k-cong {i} {j} f' x ))) ) ⟩ record { snequ1 = λ {i} {j} f' → snequ1 (f x) f' } @@ -265,16 +266,19 @@ ∎ ) where open import Relation.Binary.PropositionalEquality open ≡-Reasoning - k-cong : { i j : Obj C } ( f' : I → I ) ( x : a ) → k ( setprod t ) (comm3 {a} {x} t f' ) x ≡ snequ1 (f x) f' + snmap-cong : ( e : snequ (ΓObj s Γ) (ΓMap s Γ) ) {i : Obj C } { f g : I → I } + → snmap ( equ ( snequ1 e f)) i ≡ snmap ( equ ( snequ1 e g)) i + snmap-cong e {i} = ≡cong ( λ s → snmap s i ) refl + k-cong : { i j : Obj C } ( f' : I → I ) ( x : a ) → k ( setprod t ) (comm3 {a} {x} t f' ) x ≡ snequ1 (f x) f' k-cong {i} {j} f' x = begin k ( setprod t ) (comm3 {a} {x} t f' ) x ≡⟨ elm-cong (k ( setprod t ) (comm3 {a} {x} t f' ) x ) ( snequ1 (f x) f' ) ( begin - equ (k (setprod t) (comm3 t f') x) + equ (k (setprod t) (comm3 {a} {x} t f') x) ≡⟨⟩ record { snmap = λ i' → TMap t i' x } ≡⟨ ≡cong ( λ s → record { snmap = λ i' → s i' } ) ( extensionality Sets ( λ i' → ( sym ( begin snmap ( equ ( snequ1 (f x) f')) i' - ≡⟨ ? ⟩ + ≡⟨ snmap-cong (f x) ⟩ snmap ( equ ( snequ1 (f x) (λ x → x ))) i' ≡⟨ ≡cong ( λ f → f x ) cif=t ⟩ TMap t i' x