changeset 598:2e3459a9a69f

try two field again
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 02 Jun 2017 15:45:15 +0900
parents b281e8352158
children d3b669722d77
files SetsCompleteness.agda
diffstat 1 files changed, 217 insertions(+), 193 deletions(-) [+]
line wrap: on
line diff
--- a/SetsCompleteness.agda	Thu May 25 08:27:03 2017 +0900
+++ b/SetsCompleteness.agda	Fri Jun 02 15:45:15 2017 +0900
@@ -1,4 +1,4 @@
-open import Category -- https://github.com/konn/category-agda                                                                                     
+open import Category -- https://github.com/konn/category-agda
 open import Level
 open import Category.Sets renaming ( _o_ to _*_ )
 
@@ -11,28 +11,28 @@
 -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x )
 postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂
 
-≡cong = Relation.Binary.PropositionalEquality.cong 
+≡cong = Relation.Binary.PropositionalEquality.cong
 
-≈-to-≡ :  { c₂ : Level  } {a b  : Obj (Sets { c₂})} {f g : Hom Sets a b} →
+lemma1 :  { c₂ : Level  } {a b  : Obj (Sets { c₂})} {f g : Hom Sets a b} →
    Sets [ f ≈ g ] → (x : a ) → f x  ≡ g x
-≈-to-≡ refl  x  = refl
+lemma1 refl  x  = refl
 
 record Σ {a} (A : Set a) (B : Set a) : Set a where
   constructor _,_
   field
     proj₁ : A
-    proj₂ : B 
+    proj₂ : B
 
 open Σ public
 
 
 SetsProduct :  {  c₂ : Level} → CreateProduct ( Sets  {  c₂} )
-SetsProduct { c₂ } = record { 
+SetsProduct { c₂ } = record {
          product =  λ a b →    Σ a  b
        ; π1 = λ a b → λ ab → (proj₁ ab)
        ; π2 = λ a b → λ ab → (proj₂ ab)
        ; isProduct =  λ a b → record {
-              _×_  = λ f g  x →   record { proj₁ = f  x ;  proj₂ =  g  x }     -- ( f x ,  g x ) 
+              _×_  = λ f g  x →   record { proj₁ = f  x ;  proj₂ =  g  x }     -- ( f x ,  g x )
               ; π1fxg=f = refl
               ; π2fxg=g  = refl
               ; uniqueness = refl
@@ -45,53 +45,52 @@
           prod-cong a b {c} {f} {.f} {g} {.g} refl refl = refl
 
 
-record sproduct {a} (I : Set a)  ( Product : I → Set a ) : Set a where
+record iproduct {a} (I : Set a)  ( pi0 : I → Set a ) : Set a where
     field
-       proj : ( i : I ) → Product i
-
-open sproduct
+       pi1 : ( i : I ) → pi0 i
 
-iproduct1 : {  c₂ : Level} → (I : Obj (Sets {  c₂}) ) (fi : I → Obj Sets ) {q : Obj Sets} → ((i : I) → Hom Sets q (fi i)) → Hom Sets q (sproduct I fi)
-iproduct1 I fi {q} qi x = record { proj = λ i → (qi i) x  }
-ipcx : {  c₂ : Level} → (I : Obj (Sets {  c₂})) (fi : I → Obj Sets ) {q :  Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → (x : q) → iproduct1 I fi qi x ≡ iproduct1 I fi qi' x
-ipcx I fi {q} {qi} {qi'} qi=qi x  = 
-      begin
-        record { proj = λ i → (qi i) x  }
-     ≡⟨ ≡cong ( λ qi → record { proj = qi } ) ( extensionality Sets (λ i → ≈-to-≡  (qi=qi i) x )) ⟩
-        record { proj = λ i → (qi' i) x  }
-     ∎  where
-          open  import  Relation.Binary.PropositionalEquality 
-          open ≡-Reasoning 
-ip-cong  : {  c₂ : Level} → (I : Obj (Sets {  c₂}) ) (fi : I → Obj Sets ) {q : Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → Sets [ iproduct1 I fi qi ≈ iproduct1  I fi qi' ]
-ip-cong I fi {q} {qi} {qi'} qi=qi  = extensionality Sets ( ipcx I fi qi=qi )
+open iproduct
 
-SetsIProduct :  {  c₂ : Level} → (I : Obj Sets) (fi : I → Obj Sets ) 
+SetsIProduct :  {  c₂ : Level} → (I : Obj Sets) (ai : I → Obj Sets )
      → IProduct ( Sets  {  c₂} ) I
 SetsIProduct I fi = record {
        ai =  fi
-       ; iprod = sproduct I fi
-       ; pi  = λ i prod  → proj prod i
+       ; iprod = iproduct I fi
+       ; pi  = λ i prod  → pi1 prod i
        ; isIProduct = record {
-              iproduct = iproduct1 I fi 
+              iproduct = iproduct1
             ; pif=q = pif=q
             ; ip-uniqueness = ip-uniqueness
-            ; ip-cong  = ip-cong I fi
+            ; ip-cong  = ip-cong
        }
    } where
-       pif=q : {q : Obj Sets} (qi : (i : I) → Hom Sets q (fi i)) {i : I} → Sets [ Sets [ (λ prod → proj prod i) o iproduct1 I fi qi ] ≈ qi i ]
+       iproduct1 : {q : Obj Sets} → ((i : I) → Hom Sets q (fi i)) → Hom Sets q (iproduct I fi)
+       iproduct1 {q} qi x = record { pi1 = λ i → (qi i) x  }
+       pif=q : {q : Obj Sets} (qi : (i : I) → Hom Sets q (fi i)) {i : I} → Sets [ Sets [ (λ prod → pi1 prod i) o iproduct1 qi ] ≈ qi i ]
        pif=q {q} qi {i} = refl
-       ip-uniqueness : {q : Obj Sets} {h : Hom Sets q (sproduct I fi)} → Sets [ iproduct1 I fi (λ i → Sets [ (λ prod → proj prod i) o h ]) ≈ h ]
+       ip-uniqueness : {q : Obj Sets} {h : Hom Sets q (iproduct I fi)} → Sets [ iproduct1 (λ i → Sets [ (λ prod → pi1 prod i) o h ]) ≈ h ]
        ip-uniqueness = refl
+       ipcx : {q :  Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → (x : q) → iproduct1 qi x ≡ iproduct1 qi' x
+       ipcx {q} {qi} {qi'} qi=qi x  =
+              begin
+                record { pi1 = λ i → (qi i) x  }
+             ≡⟨ ≡cong ( λ QIX → record { pi1 = QIX } ) ( extensionality Sets (λ i → ≡cong ( λ f → f x )  (qi=qi i)  )) ⟩
+                record { pi1 = λ i → (qi' i) x  }
+             ∎  where
+                  open  import  Relation.Binary.PropositionalEquality
+                  open ≡-Reasoning
+       ip-cong  : {q : Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → Sets [ iproduct1 qi ≈ iproduct1  qi' ]
+       ip-cong {q} {qi} {qi'} qi=qi  = extensionality Sets ( ipcx qi=qi )
 
 
         --
         --         e             f
-        --    c  -------→ a ---------→ b        
-        --    ^        .    ---------→
+        --    c  -------→ a ---------→ b        f ( f'
+        --    ^        .     ---------→
         --    |      .            g
         --    |k   .
         --    |  . h
-        --    d
+        --y : d
 
         -- cf. https://github.com/danr/Agda-projects/blob/master/Category-Theory/Equalizer.agda
 
@@ -99,44 +98,40 @@
     elem : (x : A ) → (eq : f x ≡ g x) → sequ A B f g
 
 equ  :  {  c₂ : Level}  {a b : Obj (Sets {c₂}) } { f g : Hom (Sets {c₂}) a b } → ( sequ a b  f g ) →  a
-equ  (elem x eq)  = x 
+equ  (elem x eq)  = x
 
-fe=ge0  :  {  c₂ : Level}  {a b : Obj (Sets {c₂}) } { f g : Hom (Sets {c₂}) a b } →  
+fe=ge0  :  {  c₂ : Level}  {a b : Obj (Sets {c₂}) } { f g : Hom (Sets {c₂}) a b } →
      (x : sequ a b f g) → (Sets [ f o (λ e → equ e) ]) x ≡ (Sets [ g o (λ e → equ e) ]) x
 fe=ge0 (elem x eq )  =  eq
 
 irr : { c₂ : Level}  {d : Set c₂ }  { x y : d } ( eq eq' :  x  ≡ y ) → eq ≡ eq'
 irr refl refl = refl
 
-elm-cong :  {  c₂ : Level}  →  {a b : Obj (Sets {c₂}) }  {f g : Hom (Sets {c₂}) a b} →   (x y : sequ a b f g) → equ x ≡ equ y →  x  ≡ y
-elm-cong ( elem x eq  ) (elem .x eq' ) refl   =  ≡cong ( λ ee → elem x ee ) ( irr eq eq' )
-
-fe=ge  : {  c₂ : Level}  →  {a b : Obj (Sets {c₂}) }  {f g : Hom (Sets {c₂}) a b} 
-     →  Sets [ Sets [ f o (λ e → equ {_} {a} {b} {f} {g} e ) ] ≈ Sets [ g o (λ e → equ e ) ] ]
-fe=ge  =  extensionality Sets (fe=ge0 ) 
-k : {  c₂ : Level}  →  {a b : Obj (Sets {c₂}) }  {f g : Hom (Sets {c₂}) a b} →  {d : Obj Sets} (h : Hom Sets d a) 
-     → Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ] → Hom Sets d (sequ a b f g)
-k {_} {_} {_} {_} {_} {d} h eq = λ x → elem  (h x) ( ≈-to-≡ eq x )
-ek=h : {  c₂ : Level}  →  {a b : Obj (Sets {c₂}) }  {f g : Hom (Sets {c₂}) a b} →  {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} → Sets [ Sets [ (λ e → equ {_} {a} {b} {f} {g} e )  o k h eq ] ≈ h ]
-ek=h {_} {_} {_} {_} {_} {d} {h} {eq} = refl 
-
 open sequ
 
 --           equalizer-c = sequ a b f g
 --          ; equalizer = λ e → equ e
 
 SetsIsEqualizer :  {  c₂ : Level}  →  (a b : Obj (Sets {c₂}) )  (f g : Hom (Sets {c₂}) a b) → IsEqualizer Sets (λ e → equ e )f g
-SetsIsEqualizer {c₂} a b f g = record { 
-               fe=ge  = fe=ge { c₂ } {a} {b} {f} {g}
-             ; k = λ {d} h eq → k { c₂ } {a} {b} {f} {g} {d} h eq
-             ; ek=h = λ {d} {h} {eq} → ek=h {c₂} {a} {b} {f} {g} {d} {h} {eq}
+SetsIsEqualizer {c₂} a b f g = record {
+               fe=ge  = fe=ge
+             ; k = k
+             ; ek=h = λ {d} {h} {eq} → ek=h {d} {h} {eq}
              ; uniqueness  = uniqueness
        } where
+           fe=ge  :  Sets [ Sets [ f o (λ e → equ e ) ] ≈ Sets [ g o (λ e → equ e ) ] ]
+           fe=ge  =  extensionality Sets (fe=ge0 )
+           k :  {d : Obj Sets} (h : Hom Sets d a) → Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ] → Hom Sets d (sequ a b f g)
+           k {d} h eq = λ x → elem  (h x) ( ≡cong ( λ y → y x ) eq )
+           ek=h : {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} → Sets [ Sets [ (λ e → equ e )  o k h eq ] ≈ h ]
+           ek=h {d} {h} {eq} = refl
            injection :  { c₂ : Level  } {a b  : Obj (Sets { c₂})} (f  : Hom Sets a b) → Set c₂
            injection f =  ∀ x y  → f x ≡ f y →  x  ≡ y
+           elm-cong :   (x y : sequ a b f g) → equ x ≡ equ y →  x  ≡ y
+           elm-cong ( elem x eq  ) (elem .x eq' ) refl   =  ≡cong ( λ ee → elem x ee ) ( irr eq eq' )
            lemma5 :   {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} →
-                Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → (x : d ) → equ {_} {a} {b} {f} {g} (k h fh=gh x) ≡ equ (k' x)
-           lemma5 refl  x  = refl   -- somehow this is not equal to ≈-to-≡
+                Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → (x : d ) → equ (k h fh=gh x) ≡ equ (k' x)
+           lemma5 refl  x  = refl   -- somehow this is not equal to lemma1
            uniqueness :   {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} →
                 Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh  ≈ k' ]
            uniqueness  {d} {h} {fh=gh} {k'} ek'=h =  extensionality Sets  ( λ ( x : d ) →  begin
@@ -156,168 +151,197 @@
 record Small  {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ )
                 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
    field
-     hom→ : {i j : Obj C } →    Hom C i j →  I → I 
-     hom← : {i j : Obj C } →  ( f : I → I  ) →  Hom C i j 
-     hom-iso : {i j : Obj C } →  { f : Hom C i j } →   hom← ( hom→ f )  ≡ f 
+     hom→ : {i j : Obj C } →    Hom C i j →  I →  I
+     hom← : {i j : Obj C } →  ( f : I  →  I ) →  Hom C i j
+     hom-iso : {i j : Obj C } →  { f : Hom C i j } →   hom← ( hom→ f )  ≡ f
      -- ≈-≡ : {a b : Obj C } { x y : Hom C a b } →  (x≈y : C [ x ≈ y ] ) → x ≡ y
 
-open Small 
+open Small
 
-ΓObj :  {  c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } { I :  Set  c₁ } ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} ))  
+ΓObj :  {  c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } { I :  Set  c₁ } ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} ))
    (i : Obj C ) →  Set c₁
 ΓObj s  Γ i = FObj Γ i
 
-ΓMap :  {  c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } { I :  Set  c₁ } ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} ))  
-    {i j : Obj C } →  ( f : I → I ) →  ΓObj s Γ i → ΓObj  s Γ j 
-ΓMap  s Γ {i} {j} f = FMap Γ ( hom← s f ) 
+ΓMap :  {  c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } { I :  Set  c₁ } ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} ))
+    {i j : Obj C } →  ( f : I  →  I ) →  ΓObj s Γ i → ΓObj  s Γ j
+ΓMap  s Γ {i} {j} f = FMap Γ ( hom← s f )
+
+record snat   { c₂ }  { I OC :  Set  c₂ } ( sobj :  OC →  Set  c₂ )
+     ( smap : { i j :  OC  }  → (f : I  →  I )→  sobj i → sobj j ) : Set  c₂ where
+   field
+       snmap : ( i : OC ) → sobj i
+       sncommute : { i j : OC } → ( f :  I  →  I ) →  smap f ( snmap i )  ≡ snmap j
+
+open snat
+
+snmeq :  { c₂ : Level } { I OC :  Set  c₂ } { SO :  OC →  Set   c₂  } { SM : { i j :  OC  }  → (f : I  →  I )→  SO i → SO j }
+          ( s t :  snat SO SM  ) → ( i : OC ) →
+         { snmapsi   snmapti : SO i } →  snmapsi ≡  snmapti → SO i
+snmeq s t i {pi} {.pi} refl   = pi
 
-slid :  {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( s : Small C I ) → (x : Obj C)  →   I → I
-slid C I s x = hom→ s ( id1 C x )
+snmc :  { c₂ : Level } { I OC :  Set  c₂ } { SO :  OC →  Set   c₂  } { SM : { i j :  OC  }  → (f : I  →  I )→  SO i → SO j }
+          ( s t :  snat SO SM  ) → { i j : OC } → { f :  I  →  I } →
+         { snmapsi   snmapti : SO i } →  (eqi : snmapsi ≡  snmapti ) →
+         { snmapsj   snmaptj : SO j } →  (eqj : snmapsj ≡  snmaptj )
+         → ( SM f ( snmapsi )   ≡ snmapsj )
+         → ( SM f ( snmapti )   ≡ snmaptj )
+         → SM f (snmeq s t i (eqi)) ≡ snmeq s t j (eqj)
+snmc s t refl refl refl refl = refl
+
+snat1 :   { c₂ : Level }  { I OC :  Set  c₂ } ( SO :  OC →  Set  c₂ ) ( SM : { i j :  OC  }  → (f : I  →  I )→  SO i → SO j )
+    →  ( s t :  snat SO SM   )
+    → ( eq1 : ( i : OC ) → snmap s i ≡  snmap t i )
+     → ( eq2 : ( i j : OC ) ( f : I  →  I ) →  SM {i} {j} f ( snmap s i )   ≡ snmap s j )
+     → ( eq3 : ( i j : OC ) ( f : I  →  I ) →  SM {i} {j} f ( snmap t i )   ≡ snmap t j )
+    → snat SO SM
+snat1  SO SM s t eq1 eq2 eq3 =  record {
+     snmap = λ i → snmeq s t i  (eq1 i ) ;
+     sncommute = λ {i} {j} f → snmc s t (eq1 i) (eq1 j) (eq2 i j f ) (eq3 i j f )
+   }
+
+≡cong2 : { c c' : Level } { A B : Set  c } { C : Set  c' } { a a' : A } { b b' : B } ( f : A → B → C )
+    →  a  ≡  a'
+    →  b  ≡  b'
+    →  f a b  ≡  f a' b'
+≡cong2 _ refl refl = refl
+
+subst2 : { c c' : Level } { A B : Set  c } { C : Set  c' } { a a' : A } {  b b' : B } ( f : A → C ) ( g : B → C )
+    →  f a  ≡  g b
+    →  a  ≡  a'
+    →  b  ≡  b'
+    →  f a'  ≡  g  b'
+subst2 {_} {_} {A} {B} {C} { a} {.a}  {b} {.b} f g f=g refl refl = f=g
 
-record slim  { c₂ }  { I OC :  Set  c₂ } ( sobj :  OC →  Set  c₂ ) ( smap : { i j :  OC  }  → (f : I → I ) → sobj i → sobj j ) 
-      :  Set   c₂  where
-   field 
-       slequ : { i j : OC } → ( f :  I → I ) →  sequ (sproduct OC sobj ) (sobj j) ( λ x → smap f ( proj x i ) ) ( λ x → proj x j )
-   slobj : OC →  Set  c₂ 
-   slobj i = sobj i
-   slmap : {i j : OC } →  (f : I → I ) → sobj i → sobj j
-   slmap f = smap f 
-   ipp : {i j : OC } → (f : I → I ) → sproduct OC sobj
-   ipp {i} {j} f = equ ( slequ {i} {j} f )
+snmeqeqs  : { c₂ : Level } { I OC :  Set  c₂ } ( SO :  OC →  Set   c₂  ) ( SM : { i j :  OC  }  → (f : I  →  I )→  SO i → SO j )
+          ( s t :  snat SO SM  ) → ( i : OC ) →  ( eq1 : ( i : OC ) → snmap s i ≡  snmap t i ) →
+           snmap s i ≡ snmeq s t i  (eq1 i )
+snmeqeqs SO SM s t i eq1  = lemma  (eq1 i) refl where
+    lemma  :  { snmapsi   snmapti sm : SO i } → ( eq1 : snmapsi ≡  snmapti ) → ( snmapsi  ≡ sm ) →
+          sm  ≡ snmeq s t i  eq1
+    lemma refl refl  = refl
 
-open slim
+snmeqeqt  : { c₂ : Level } { I OC :  Set  c₂ } ( SO :  OC →  Set   c₂  ) ( SM : { i j :  OC  }  → (f : I  →  I )→  SO i → SO j )
+          ( s t :  snat SO SM  ) → ( i : OC ) →  ( eq1 : ( i : OC ) → snmap s i ≡  snmap t i ) →
+           snmap t i ≡ snmeq s t i  (eq1 i )
+snmeqeqt SO SM s t i eq1  = lemma  (eq1 i) refl where
+    lemma  :  { snmapsi   snmapti sm : SO i } → ( eq1 : snmapsi ≡  snmapti ) → ( snmapti  ≡ sm ) →
+          sm  ≡ snmeq s t i  eq1
+    lemma refl refl  = refl
+
+scomm2 : { c₂ : Level } { I OC :  Set  c₂ } ( SO :  OC →  Set   c₂  ) ( SM : { i j :  OC  }  → (f : I  →  I )→  SO i → SO j )
+          ( s t :  snat SO SM  ) → ( eq1 : ( i : OC ) → snmap s i ≡  snmap t i )
+         → ( i j : OC ) → ( f :  I  →  I )
+         → SM f ( snmap s i )   ≡ snmap s j
+         → {x :  ( i : OC ) → SO i } → (x  ≡  λ i → snmeq s t i  (eq1 i )  )
+         → SM f (x i) ≡  x j
+scomm2 SO SM s t eq1 i j f eq2 refl =  lemma eq2 (snmeqeqs SO SM s t i eq1) (snmeqeqs SO SM s t j eq1)    where
+    lemma : { si sni : SO i} { sj snj : SO j  } →  ( SM f si  ≡ sj ) →  (si  ≡ sni )  →  (sj  ≡ snj ) → ( SM f sni  ≡ snj )
+    lemma eq1 eq2 eq3 = subst2 (λ x → SM f x) (λ y → y ) eq1 eq2 eq3
 
-smap-id :  {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} ))
-   ( se : slim  (ΓObj s Γ) (ΓMap s Γ) ) → (i : Obj C )  → (x : FObj Γ i ) → slmap se (slid C I s i) x ≡ x
-smap-id C I s Γ se i x =  begin
-             slmap se (slid C I s i) x
-          ≡⟨⟩
-             slmap se ( hom→ s (id1 C i)) x
-          ≡⟨⟩
-             FMap Γ (hom← s (hom→ s (id1 C i))) x
-          ≡⟨ ≡cong ( λ ii →  FMap Γ ii x ) (hom-iso s) ⟩
-             FMap Γ (id1 C i) x
-          ≡⟨ ≡cong ( λ f → f x ) (IsFunctor.identity ( isFunctor Γ) ) ⟩
-             x
-          ∎   where
+tcomm2 : { c₂ : Level } { I OC :  Set  c₂ } ( SO :  OC →  Set   c₂  ) ( SM : { i j :  OC  }  → (f : I  →  I )→  SO i → SO j )
+          ( s t :  snat SO SM  ) → ( eq1 : ( i : OC ) → snmap s i ≡  snmap t i )
+         → ( i j : OC ) → ( f :  I  →  I )
+         → SM f ( snmap t i )   ≡ snmap t j
+         → SM f (snmeq s t i (eq1 i)) ≡ snmeq s t j (eq1 j)
+tcomm2 SO SM s t eq1 i j f eq2 =  lemma eq2 (snmeqeqt SO SM s t i eq1) (snmeqeqt SO SM s t j eq1)    where
+    lemma : { si sni : SO i} { sj snj : SO j  } →  ( SM f si  ≡ sj ) →  (si  ≡ sni )  →  (sj  ≡ snj ) → ( SM f sni  ≡ snj )
+    lemma eq1 eq2 eq3 = subst2 (λ x → SM f x) (λ y → y ) eq1 eq2 eq3
+
+
+snat-cong :  { c : Level }  { I OC :  Set  c }  ( SObj :  OC →  Set  c  ) ( SMap : { i j :  OC  }  → (f : I  →  I )→  SObj i → SObj j)
+         { s t :  snat SObj SMap   }
+     → (( i : OC ) → snmap s i ≡  snmap t i )
+     → ( ( i j : OC ) ( f : I  →  I ) →  SMap {i} {j} f ( snmap s i )   ≡ snmap s j )
+     → ( ( i j : OC ) ( f : I  →  I ) →  SMap {i} {j} f ( snmap t i )   ≡ snmap t j )
+     → s ≡ t
+snat-cong {_} {I} {OC} SO SM {s} {t}  eq1  eq2 eq3 =  begin
+     record { snmap = λ i →  snmap s i ; sncommute  = λ {i} {j} f → sncommute s f  }
+ ≡⟨
+    ≡cong2 ( λ x y →
+      record { snmap = λ i → x i  ; sncommute  = λ {i} {j} f → y x i j f } )  (  extensionality Sets  ( λ  i  →  (eq1 i) ) )
+           ( extensionality Sets  ( λ  x  →
+           ( extensionality Sets  ( λ  i  →
+             ( extensionality Sets  ( λ  j  →
+               ( extensionality Sets  ( λ  f  →  irr {!!} {!!}
+             ))))))))
+  ⟩
+     record { snmap = λ i →  snmap t i ; sncommute  = λ {i} {j} f → sncommute t f  }
+             ∎   where
                   open  import  Relation.Binary.PropositionalEquality
                   open ≡-Reasoning
 
-
-product-to :    { c₂ : Level }  { I OC :  Set  c₂ } { sobj :  OC →  Set  c₂ } 
-      →  Hom Sets (sproduct OC sobj)  (sproduct OC sobj)
-product-to x =  record { proj = proj x }
-
-lemma-equ' :   {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} ))
-    {i j : Obj C } →  { f : I → I } 
-    →  (se : slim (ΓObj s Γ) (ΓMap s Γ) )
-    →  proj (ipp se {i} {j} f) i ≡ proj (ipp se {i} {i} (slid C I s i) ) i
-lemma-equ' C I s Γ {i} {j} {f} se =   
-     fe=ge0 {!!}
+open import HomReasoning
+open NTrans
 
-lemma-equ :   {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} ))
-    {i j i' j' : Obj C } →  { f f' : I → I } 
-    →  (se : slim (ΓObj s Γ) (ΓMap s Γ) )
-    →  proj (ipp se {i} {j} f) i ≡ proj (ipp se {i'} {j'} f' ) i
-lemma-equ C I s Γ {i} {j} {i'} {j'} {f} {f'} se =   ≡cong ( λ p → proj p i ) ( begin
-                 ipp se {i} {j} f 
+Cone : {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( s : Small C I )  ( Γ : Functor C (Sets  {c₁} ) )
+    → NTrans C Sets (K Sets C (snat  (ΓObj s Γ) (ΓMap s Γ) ) ) Γ
+Cone C I s  Γ  =  record {
+               TMap = λ i →  λ sn →  snmap sn i
+             ; isNTrans = record { commute = comm1 }
+      } where
+    comm1 :  {a b : Obj C} {f : Hom C a b} →
+        Sets [ Sets [ FMap Γ f o (λ sn → snmap sn a) ] ≈
+        Sets [ (λ sn →  (snmap sn b)) o FMap (K Sets C (snat (ΓObj s Γ) (ΓMap s Γ))) f ] ]
+    comm1 {a} {b} {f} = extensionality Sets  ( λ  sn  →  begin
+                 FMap Γ f  (snmap sn  a )
+             ≡⟨ ≡cong ( λ f → ( FMap Γ f (snmap sn  a ))) (sym ( hom-iso s  )) ⟩
+                 FMap Γ ( hom← s ( hom→ s f))  (snmap sn  a )
              ≡⟨⟩
-                 record { proj = λ x → proj (equ (slequ se f)) x }
-             ≡⟨ ≡cong ( λ p → record { proj =  proj p i })  (  ≡cong ( λ QIX → record { proj = QIX } ) (  
-                extensionality Sets  ( λ  x  →  ≡cong ( λ qi → qi x  ) refl
-              ) )) ⟩
-                 record { proj = λ x → proj (equ (slequ se f')) x }
-             ≡⟨⟩
-                 ipp se {i'} {j'} f'  
+                 ΓMap s Γ (hom→ s f) (snmap sn a )
+             ≡⟨ sncommute sn (hom→ s  f) ⟩
+                 snmap sn b
              ∎  ) where
                   open  import  Relation.Binary.PropositionalEquality
                   open ≡-Reasoning
 
 
-open import HomReasoning
-open NTrans
-
-
-Cone : {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( s : Small C I )  ( Γ : Functor C (Sets  {c₁} ) )   
-    → NTrans C Sets (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ)  )) Γ
-Cone C I s  Γ =  record {
-               TMap = λ i →  λ se → proj ( ipp se {i} {i} (slid C I s i) ) i
-             ; isNTrans = record { commute = commute1 }
-      } where
-         commute1 :  {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o (λ se → proj ( ipp se  (slid C I s a) ) a) ] ≈
-                Sets [ (λ se → proj ( ipp se  (slid C I s b) ) b) o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ) )) f ] ]
-         commute1 {a} {b} {f} =   extensionality Sets  ( λ  se  →  begin  
-                   (Sets [ FMap Γ f o (λ se₁ → proj ( ipp se  (slid C I s a) ) a) ]) se
+SetsLimit : {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( small : Small C I ) ( Γ : Functor C (Sets  {c₁} ) )
+    → Limit Sets C Γ
+SetsLimit { c₂} C I s Γ = record {
+           a0 =  snat  (ΓObj s Γ) (ΓMap s Γ)
+         ; t0 = Cone C I s Γ
+         ; isLimit = record {
+               limit  = limit1
+             ; t0f=t = λ {a t i } → t0f=t {a} {t} {i}
+             ; limit-uniqueness  =  λ {a t i }  → limit-uniqueness   {a} {t} {i}
+          }
+       }  where
+          a0 : Obj Sets
+          a0 =  snat  (ΓObj s Γ) (ΓMap s Γ)
+          comm2 : { a : Obj Sets } {x : a } {i j : Obj C} (t : NTrans C Sets (K Sets C a) Γ) (f : I →  I )
+             → ΓMap s Γ f (TMap t i x) ≡ TMap t j x
+          comm2 {a} {x} t f =  ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) )
+          limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (snat (ΓObj s Γ) (ΓMap s Γ))
+          limit1 a t = λ x →  record { snmap = λ i →  ( TMap t i ) x ;
+              sncommute = λ f → comm2 t f }
+          t0f=t : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o limit1 a t ] ≈ TMap t i ]
+          t0f=t {a} {t} {i} =  extensionality Sets  ( λ  x  →  begin
+                 ( Sets [ TMap (Cone C I s Γ) i o limit1 a t ]) x
+             -- ≡⟨⟩
+                 -- snmap ( record { snmap = λ i →  ( TMap t i ) x ; sncommute = λ {i j} f → comm2 {a} {x} {i} {j} t f }  ) i
              ≡⟨⟩
-                   FMap Γ f (proj ( ipp se {a} {a} (slid C I s a) ) a)
-             ≡⟨  ≡cong ( λ g → FMap Γ g (proj ( ipp se {a} {a} (slid C I s a) ) a))  (sym ( hom-iso s  ) ) ⟩
-                   FMap Γ  (hom← s ( hom→ s f))  (proj ( ipp se {a} {a} (slid C I s a) ) a)
-             ≡⟨ ≡cong ( λ g →  FMap Γ  (hom← s ( hom→ s f)) g )  ( lemma-equ  C I s Γ   se ) ⟩
-                   FMap Γ  (hom← s ( hom→ s f))  (proj ( ipp se {a} {b} (hom→ s f) ) a)
-             ≡⟨  fe=ge0 ( slequ se (hom→ s f ) ) ⟩
-                   proj (ipp se {a} {b} ( hom→ s f  )) b
-             ≡⟨ sym ( lemma-equ C I s Γ se ) ⟩
-                   proj (ipp se {b} {b} (slid C I s b)) b
-             ≡⟨⟩
-                  (Sets [ (λ se₁ → proj (ipp se₁ (slid C I s b)) b) o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ) )) f ]) se
+                 TMap t i x
              ∎  ) where
                   open  import  Relation.Binary.PropositionalEquality
                   open ≡-Reasoning
-
-
+          limit-uniqueness : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (snat (ΓObj s Γ) (ΓMap s Γ))} →
+                ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ]
+          limit-uniqueness {a} {t} {f} cif=t = extensionality Sets  ( λ  x  →  begin
+                  limit1 a t x
+             ≡⟨⟩
+                  record { snmap = λ i →  ( TMap t i ) x ; sncommute = λ f → comm2 t f }
+             ≡⟨ snat-cong (ΓObj s Γ) (ΓMap s Γ) (eq1 x) (eq2 x ) (eq3 x ) ⟩
+                  record { snmap = λ i →  snmap  (f x ) i  ; sncommute = sncommute (f x ) }
+             ≡⟨⟩
+                  f x
+             ∎  ) where
+                  open  import  Relation.Binary.PropositionalEquality
+                  open ≡-Reasoning
+                  eq1 : (x : a ) (i : Obj C) → TMap t i x ≡ snmap (f x) i
+                  eq1 x i = sym ( ≡cong ( λ f → f x ) cif=t  )
+                  eq2 : (x : a ) (i j : Obj C) (f : I →  I ) → ΓMap s Γ f (TMap t i x) ≡ TMap t j x
+                  eq2 x i j f =  ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) )
+                  eq3 :  (x : a ) (i j : Obj C) (k : I →  I ) → ΓMap s Γ k (snmap (f x) i) ≡ snmap (f x) j
+                  eq3 x i j k =  sncommute (f x )  k
 
 
-SetsLimit : {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( small : Small C I ) ( Γ : Functor C (Sets  {c₁} ) ) 
-    → Limit Sets C Γ
-SetsLimit { c₂} C I s Γ = record { 
-           a0 =  slim  (ΓObj s Γ) (ΓMap s Γ)  
-         ; t0 = Cone C I s Γ 
-         ; isLimit = record {
-               limit  =  limit1 
-             ; t0f=t = λ {a t i } → refl
-             ; limit-uniqueness  =  λ {a} {t} {f} → uniquness1 {a} {t} {f}
-          }
-       }  where
-              limit2 :  (a : Obj Sets) → ( t : NTrans C Sets (K Sets C a) Γ ) → {i j : Obj C } →  ( f : I → I ) 
-                    → ( x : a )  → ΓMap s Γ f (TMap t i x) ≡ TMap t j x
-              limit2 a t f x =   ≡cong ( λ g → g x )   ( IsNTrans.commute ( isNTrans t  ) )
-              limit1 :  (a : Obj Sets) → ( t : NTrans C Sets (K Sets C a) Γ ) → Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ) )
-              limit1 a t x = record {
-                   slequ = λ {i} {j} f → elem ( record { proj = λ i → TMap t i x }  ) ( limit2 a t f x  )
-                } 
-              uniquness2 : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ)  )} 
-                     →  ( i j : Obj C  ) →
-                    ({i  : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) →  (f' : I → I ) →  (x : a ) 
-                     →  record { proj = λ i₁ → TMap t i₁ x }  ≡ equ (slequ (f x) f')
-              uniquness2 {a} {t} {f} i j cif=t f' x = begin
-                  record { proj = λ i → TMap t i x }
-                ≡⟨   ≡cong ( λ g → record { proj = λ i → g i  } ) (  extensionality Sets  ( λ i →  sym (  ≡cong ( λ e → e x ) cif=t ) ) )  ⟩
-                  record { proj = λ i → (Sets [ TMap (Cone C I s Γ) i o f ]) x }
-                ≡⟨⟩
-                  record { proj = λ i →  proj (ipp (f x) {i} {i} (slid C I s i) ) i }
-                ≡⟨ ≡cong ( λ g →   record { proj = λ i' → g i' } ) ( extensionality Sets  ( λ  i''  → lemma-equ C I s Γ (f x)))  ⟩
-                  record { proj = λ i →  proj (ipp (f x) f') i  }
-                ∎   where
-                  open  import  Relation.Binary.PropositionalEquality
-                  open ≡-Reasoning
-              uniquness1 : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ)  )} →
-                    ({i  : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t  ≈ f ]
-              uniquness1 {a} {t} {f} cif=t =  extensionality Sets  ( λ  x  →  begin
-                  limit1 a t x
-                ≡⟨⟩
-                   record { slequ = λ {i} {j} f' → elem ( record { proj = λ i → TMap t i x }  ) ( limit2 a t f' x ) }
-                ≡⟨ ≡cong ( λ e → record { slequ =  λ {i} {j} f' → e i j f' x } ) (
-                        extensionality Sets  ( λ  i  →
-                           extensionality Sets  ( λ  j  →
-                               extensionality Sets  ( λ  f'  →
-                                   extensionality Sets  ( λ  x  → 
-                  elm-cong (  elem ( record { proj = λ i → TMap t i x }  ) ( limit2 a t f' x )) (slequ (f x) f' ) (uniquness2 {a} {t} {f} i j cif=t f' x ) )
-                           )))
-                     ) ⟩
-                   record { slequ = λ {i} {j} f' → slequ (f x ) f' }
-                ≡⟨⟩
-                  f x
-                ∎  ) where
-                  open  import  Relation.Binary.PropositionalEquality
-                  open ≡-Reasoning
-