Mercurial > hg > Members > kono > Proof > category
changeset 866:2ff6242aed06
dead end
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 07 Apr 2020 15:58:43 +0900 |
parents | bcd91387cef3 |
children | e47045bfc37a |
files | CCCGraph1.agda |
diffstat | 1 files changed, 13 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph1.agda Tue Apr 07 14:33:54 2020 +0900 +++ b/CCCGraph1.agda Tue Apr 07 15:58:43 2020 +0900 @@ -51,11 +51,16 @@ eval (iv (f *) (iv g h)) | < t , t₁ > = iv (f *) < t , t₁ > eval (iv f (iv g h)) | iv f1 t = iv f (iv f1 t) - pi : {a b c : Objs} → { f : Arrows a b } { g : Arrows a c } → Arrows a ( b ∧ c) → Arrows a b + pi : {a b c : Objs} → Arrows a ( b ∧ c) → Arrows a b pi (id .(_ ∧ _)) = iv π (id _) pi < x , x₁ > = x pi (iv f x) = iv π (iv f x) + pi' : {a b c : Objs} → Arrows a ( b ∧ c) → Arrows a c + pi' (id .(_ ∧ _)) = iv π' (id _) + pi' < x , x₁ > = x₁ + pi' (iv f x) = iv π' (iv f x) + refl-<l> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c } → < f , g > ≡ < f1 , g1 > → f ≡ f1 refl-<l> refl = refl @@ -115,10 +120,13 @@ std-iv (x *) y (iv z f) ne | iv z1 t = refl std-∧ : { a b c : Objs } ( f : Arrows a b ) ( g : Arrows a b ) ( h : Arrows a c ) → ¬ ( eval f ≡ iv π < g , h > ) - std-∧ f g h t with eval f | inspect eval f - std-∧ {a} {b} {_} (iv π < f1 , f2 >) g h refl | iv π < g , h > | record { eq = ee } = std-∧ f1 g h ee - std-∧ {a} {b} {_} (iv π' < f1 , f2 >) g h refl | iv π < g , h > | record { eq = ee } = std-∧ f2 g h ee - std-∧ {a} {b} {_} (iv f (iv f₁ f1)) g h refl | iv π < g , h > | record { eq = ee } = {!!} + std-∧ (iv f f1) g h t with eval ( iv f f1) | inspect eval (iv f f1 ) + std-∧ (iv π < f1 , f2 >) g h refl | iv π < g , h > | record { eq = ee } = std-∧ f1 g h ee + std-∧ (iv π' < f1 , f2 >) g h refl | iv π < g , h > | record { eq = ee } = std-∧ f2 g h ee + std-∧ (iv π (iv f f1)) g h refl | iv π < g , h > | record { eq = ee } = ? + std-∧ (iv x (iv f f1)) g h refl | iv π < g , h > | record { eq = ee } = {!!} where + lemma : ¬ ( eval (iv x (iv f f1)) ≡ iv π < g , h > ) + lemma ee = {!!} std-∧' : { a b c : Objs } ( f : Arrows a c ) ( g : Arrows a b ) ( h : Arrows a c ) → ¬ ( eval f ≡ iv π' < g , h > ) std-∧' = {!!}