Mercurial > hg > Members > kono > Proof > category
changeset 91:3093e70ec20d
strange but worked.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 28 Jul 2013 19:49:00 +0900 |
parents | 2d8da9d745c5 |
children | ef8f14b862b5 |
files | cat-utility.agda nat.agda |
diffstat | 2 files changed, 7 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/cat-utility.agda Sun Jul 28 19:08:26 2013 +0900 +++ b/cat-utility.agda Sun Jul 28 19:49:00 2013 +0900 @@ -144,6 +144,7 @@ -- MMap f = FMap ( UR ○ FR ) f field T=UF : T ≃ (UR ○ FR) + UF=T : (UR ○ FR) ≃ T μ=UεF : {x : Obj A } -> A [ TMap μR x ≈ FMap UR ( TMap εR ( FObj FR x ) ) ] -- ηR=η : {x : Obj A } -> A [ TMap ηR x ≈ TMap η x ] -- μR=μ : {x : Obj A } -> A [ TMap μR x ≈ TMap μ x ]
--- a/nat.agda Sun Jul 28 19:08:26 2013 +0900 +++ b/nat.agda Sun Jul 28 19:49:00 2013 +0900 @@ -568,17 +568,17 @@ Category.Cat.refl {C = D} (IsEquivalence.sym (IsCategory.isEquivalence (Category.isCategory D)) Ff≈Gf) RHom = \(a b : Obj A) -> KleisliHom {c₁} {c₂} {ℓ} {A} { U_K ○ F_K } a b - TtoK : {a b : Obj A} -> (f : KHom a b) -> {g h : Hom A (FObj T b) (FObj ( U_K ○ F_K ) b) } -> - ([ A ] g ~ h) -> Hom A a (FObj ( U_K ○ F_K ) b) + TtoK : {a b : Obj A} -> (KHom a b) -> {g : Hom A (FObj T b) (FObj ( U_K ○ F_K) b) } -> + ([ A ] g ~ g) -> Hom A a (FObj ( U_K ○ F_K ) b) TtoK f (Category.Cat.refl {g} eq) = A [ g o (KMap f) ] RMap : {a b : Obj A} -> (f : KHom a b) -> Hom A a (FObj ( U_K ○ F_K ) b) - RMap {a} {b} f = TtoK f {!!} -- ((T=UF RK) (id1 A b)) + RMap {a} {b} f = TtoK f (( ≃-sym (UF=T RK))(id1 A b)) - KtoT : {a b : Obj A} -> (f : RHom a b) -> {g h : Hom A (FObj ( U_K ○ F_K ) b) (FObj T b) } -> - ([ A ] g ~ h) -> Hom A a (FObj T b) + KtoT : {a b : Obj A} -> (RHom a b) -> {g : Hom A (FObj ( U_K ○ F_K ) b) (FObj T b) } -> + ([ A ] g ~ g) -> Hom A a (FObj T b) KtoT f (Category.Cat.refl {g} eq) = A [ g o (KMap f) ] RKMap : {a b : Obj A} -> (f : RHom a b) -> Hom A a (FObj T b) - RKMap {a} {b} f = KtoT f (( ≃-sym (T=UF RK)) (id1 A b)) + RKMap {_} {b} f = KtoT f (( ≃-sym (T=UF RK)) (id1 A b)) kfmap : {a b : Obj A} (f : KHom a b) -> Hom B (FObj F_K a) (FObj F_K b) kfmap {_} {b} f = B [ TMap ε_K (FObj F_K b) o FMap F_K (RMap f) ]