Mercurial > hg > Members > kono > Proof > category
changeset 9:3207ae6d4442
reasoning
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jul 2013 18:16:46 +0900 |
parents | d5e4db7bbe01 |
children | 3ef6a17353d1 |
files | nat.agda |
diffstat | 1 files changed, 9 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/nat.agda Sun Jul 07 16:38:48 2013 +0900 +++ b/nat.agda Sun Jul 07 18:16:46 2013 +0900 @@ -144,10 +144,10 @@ trans-hom : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { x y z : Hom A a b } → A [ x ≈ y ] → A [ y ≈ z ] → A [ x ≈ z ] - trans-hom = \a -> IsEquivalence.trans (IsCategory.isEquivalence ( Category.isCategory a )) + trans-hom a b c = ( IsEquivalence.trans (IsCategory.isEquivalence ( Category.isCategory a ))) b c - infix 2 _∎ - infixr 2 _≈⟨_⟩_ + infixr 2 _∎_ + infixr 2 _≈⟨_!_⟩_ infix 1 begin_ data IsRelatedTo {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } ( x y : Hom A a b ) : @@ -158,16 +158,13 @@ IsRelatedTo A x y → A [ x ≈ y ] begin relTo x≈y = x≈y - _≈⟨_⟩_ : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} {a b : Obj A } - { x y z : Hom A a b } → - A [ x ≈ y ] → IsRelatedTo A y z → IsRelatedTo A x z - _≈⟨_⟩_ = {!!} + _≈⟨_!_⟩_ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) -> {a b : Obj A } + ( x : Hom A a b ) → { y z : Hom A a b } → + A [ x ≈ y ] → IsRelatedTo A y z → IsRelatedTo A x z + a ≈⟨ _ ! x≈y ⟩ relTo y≈z = relTo ( trans-hom a x≈y y≈z ) --- _≈⟨ x ⟩ _ = ? -- relTo (Trans1 x≈y y≈z) --- _≈⟨ x≈y ⟩ relTo y≈z = ? -- relTo (Trans1 x≈y y≈z) - - _∎ : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} {a b : Obj A } (x : Hom A a b) → IsRelatedTo A x x - _∎ _ = relTo {!!} + _∎_ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } (x : Hom A a b) → IsRelatedTo A x x + a ∎ _ = relTo ( refl-hom a ) open Kleisli Lemma7 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ->