Mercurial > hg > Members > kono > Proof > category
changeset 118:324950507362
ε^T and μ^t
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 01 Aug 2013 10:30:54 +0900 |
parents | d91e89766a76 |
children | 32ef4cdb18a2 |
files | em-category.agda |
diffstat | 1 files changed, 46 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/em-category.agda Thu Aug 01 09:46:56 2013 +0900 +++ b/em-category.agda Thu Aug 01 10:30:54 2013 +0900 @@ -251,6 +251,52 @@ isNTrans1 : IsNTrans A A identityFunctor ( U^T ○ F^T ) (\a -> TMap η a) isNTrans1 = record { naturality = naturality1 } +Lemma-EM9 : (a : EMObj) -> A [ A [ (φ a) o FMap T (φ a) ] ≈ A [ (φ a) o (φ (FObj ( F^T ○ U^T ) a)) ] ] +Lemma-EM9 a = let open ≈-Reasoning (A) in + sym ( begin + (φ a) o (φ (FObj ( F^T ○ U^T ) a)) + ≈⟨⟩ + (φ a) o (TMap μ (obj a)) + ≈⟨ IsAlgebra.eval (isAlgebra a) ⟩ + (φ a) o FMap T (φ a) + ∎ ) + +emap-ε : (a : EMObj ) -> EMHom (FObj ( F^T ○ U^T ) a) a +emap-ε a = record { EMap = φ a ; homomorphism = Lemma-EM9 a } + +ε^T : NTrans Eilenberg-MooreCategory Eilenberg-MooreCategory ( F^T ○ U^T ) identityFunctor +ε^T = record { TMap = \a -> emap-ε a; isNTrans = isNTrans1 } where + naturality1 : {a b : EMObj } {f : EMHom a b} + → (f ∙ ( emap-ε a ) ) ≗ (( emap-ε b ) ∙( FMap (F^T ○ U^T) f ) ) + naturality1 {a} {b} {f} = let open ≈-Reasoning (A) in + sym ( begin + EMap (( emap-ε b ) ∙ ( FMap (F^T ○ U^T) f )) + ≈⟨⟩ + φ b o FMap T (EMap f) + ≈⟨ homomorphism f ⟩ + EMap f o φ a + ≈⟨⟩ + EMap (f ∙ ( emap-ε a )) + ∎ ) + isNTrans1 : IsNTrans Eilenberg-MooreCategory Eilenberg-MooreCategory ( F^T ○ U^T ) identityFunctor (\a -> emap-ε a ) + isNTrans1 = record { naturality = naturality1 } + + +-- +-- μ = U^T ε U^F +-- + +emap-μ : (a : Obj A) -> Hom A (FObj ( U^T ○ F^T ) (FObj ( U^T ○ F^T ) a)) (FObj ( U^T ○ F^T ) a) +emap-μ a = FMap U^T ( TMap ε^T ( FObj F^T a )) + +nat-μ : NTrans A A (( U^T ○ F^T ) ○ ( U^T ○ F^T )) ( U^T ○ F^T ) +nat-μ = record { TMap = emap-μ ; isNTrans = isNTrans1 } where + naturality1 : {a b : Obj A} {f : Hom A a b} + → A [ A [ (FMap (U^T ○ F^T) f) o ( emap-μ a) ] ≈ A [ ( emap-μ b ) o FMap (U^T ○ F^T) ( FMap (U^T ○ F^T) f) ] ] + naturality1 = {!!} + isNTrans1 : IsNTrans A A (( U^T ○ F^T ) ○ ( U^T ○ F^T )) ( U^T ○ F^T ) emap-μ + isNTrans1 = record { naturality = naturality1 } + --open MResolution