Mercurial > hg > Members > kono > Proof > category
changeset 516:327dc7372729
yellow remains ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 21 Mar 2017 13:42:08 +0900 |
parents | 221dd46ded35 |
children | 6f7630a255e4 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 19 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Tue Mar 21 13:18:52 2017 +0900 +++ b/SetsCompleteness.agda Tue Mar 21 13:42:08 2017 +0900 @@ -122,10 +122,18 @@ ek=h {d} {h} {eq} = refl fhy=ghy : (d : Obj Sets ) ( h : Hom Sets d a ) (y : d ) → (fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]) → f (h y) ≡ g (h y) fhy=ghy d h y fh=gh = cong ( λ f → f y ) fh=gh - fuga : (x : a ) → { fx=gx : f x ≡ g x } → sequ a b f g - fuga x { fx=gx } = elem x fx=gx - hoge : sequ a b f g → sequ a b f g - hoge ( elem x eq ) = elem x eq + xequ : (x : a ) → { fx=gx : f x ≡ g x } → sequ a b f g + xequ x { fx=gx } = elem x fx=gx + equ→equ : sequ a b f g → sequ a b f g + equ→equ ( elem x eq ) = elem x eq + lemma1 : ( e : sequ a b f g ) → ( z : sequ a b f g ) → elem (equ z) (fe=ge0 z) ≡ equ→equ z + lemma1 ( elem x eq ) (elem x' eq' ) = refl + lemma2 : { e : sequ a b f g } → ( λ e → elem (equ e) (fe=ge0 e ) ) ≡ equ→equ + lemma2 {e} = extensionality Sets ( λ z → lemma1 e z ) + lemma4 : ( e : sequ a b f g ) → ( z : sequ a b f g ) → equ→equ z ≡ z + lemma4 ( elem x eq ) (elem x' eq' ) = refl + lemma3 : { e : sequ a b f g } → equ→equ ≡ ( λ e → e ) + lemma3 {e} = extensionality Sets ( λ z → lemma4 e z ) repl : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → ( y : d ) → Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → k h fh=gh y ≡ k' y repl {d} {h} {fh=gh} {k'} y ek'=h = @@ -134,16 +142,16 @@ ≡⟨⟩ elem (h y) (fhy=ghy d h y fh=gh ) ≡⟨⟩ - fuga (h y ) {fhy=ghy d h y fh=gh } - ≡⟨ sym ( Category.cong (λ f → fuga (f y ) ) ek'=h ) ⟩ - fuga ( ( λ e → equ e ) ( k' y ) ) {fe=ge0 (k' y)} + xequ (h y ) {fhy=ghy d h y fh=gh } + ≡⟨ sym ( Category.cong (λ f → xequ (f y ) ) ek'=h ) ⟩ + xequ ( ( λ e → equ e ) ( k' y ) ) {fe=ge0 (k' y)} ≡⟨⟩ - ( λ e → fuga ( equ e )) ( k' y ) + ( λ e → xequ ( equ e )) ( k' y ) ≡⟨⟩ ( λ e → elem (equ e) (fe=ge0 e )) ( k' y ) - ≡⟨ {!!} ⟩ - hoge ( k' y ) - ≡⟨ {!!} ⟩ + ≡⟨ Category.cong ( λ f → f ( k' y ) ) lemma2 ⟩ + equ→equ ( k' y ) + ≡⟨ Category.cong ( λ f → f ( k' y ) ) lemma3 ⟩ ( λ e → e ) ( k' y ) ≡⟨⟩ k' y