Mercurial > hg > Members > kono > Proof > category
changeset 119:32ef4cdb18a2
nat-μ
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 01 Aug 2013 15:01:31 +0900 |
parents | 324950507362 |
children | 494f870ad54b |
files | em-category.agda |
diffstat | 1 files changed, 18 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/em-category.agda Thu Aug 01 10:30:54 2013 +0900 +++ b/em-category.agda Thu Aug 01 15:01:31 2013 +0900 @@ -286,6 +286,12 @@ -- μ = U^T ε U^F -- +b : Obj A +b = {!!} + +f : {a : Obj A} -> Hom A a b +f = {!!} + emap-μ : (a : Obj A) -> Hom A (FObj ( U^T ○ F^T ) (FObj ( U^T ○ F^T ) a)) (FObj ( U^T ○ F^T ) a) emap-μ a = FMap U^T ( TMap ε^T ( FObj F^T a )) @@ -293,7 +299,18 @@ nat-μ = record { TMap = emap-μ ; isNTrans = isNTrans1 } where naturality1 : {a b : Obj A} {f : Hom A a b} → A [ A [ (FMap (U^T ○ F^T) f) o ( emap-μ a) ] ≈ A [ ( emap-μ b ) o FMap (U^T ○ F^T) ( FMap (U^T ○ F^T) f) ] ] - naturality1 = {!!} + naturality1 {a} {b} {f} = let open ≈-Reasoning (A) in + sym ( begin + ( emap-μ b ) o FMap (U^T ○ F^T) ( FMap (U^T ○ F^T) f) + ≈⟨⟩ + (FMap U^T ( TMap ε^T ( FObj F^T b ))) o (FMap (U^T ○ F^T) ( FMap (U^T ○ F^T) f) ) + ≈⟨⟩ + (TMap μ b) o (FMap T (FMap T f)) + ≈⟨ sym (nat μ) ⟩ + FMap T f o ( TMap μ a ) + ≈⟨⟩ + (FMap (U^T ○ F^T) f) o ( emap-μ a) + ∎ ) isNTrans1 : IsNTrans A A (( U^T ○ F^T ) ○ ( U^T ○ F^T )) ( U^T ○ F^T ) emap-μ isNTrans1 = record { naturality = naturality1 }