Mercurial > hg > Members > kono > Proof > category
changeset 747:37bffde965b3
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 10 Dec 2017 11:28:03 +0900 |
parents | 2d1fb7adcafe |
children | a83145326258 |
files | monad→monoidal.agda |
diffstat | 1 files changed, 12 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/monad→monoidal.agda Sat Dec 09 11:51:30 2017 +0900 +++ b/monad→monoidal.agda Sun Dec 10 11:28:03 2017 +0900 @@ -96,15 +96,9 @@ ≈⟨⟩ ( λ x → FMap F proj₁ (μ (a * One) (FMap F (λ f → FMap F (λ g → f , g) (η One OneObj)) x)) ) ≈⟨⟩ - ( λ x → FMap F proj₁ ((μ (a * One) o (FMap F (λ f → FMap F (λ g → f , g) (η One OneObj)))) x)) + FMap F proj₁ o (μ (a * One ) o FMap F (λ f → ( FMap F (λ g → f , g) ((η One) OneObj)))) ≈⟨⟩ - ( λ x → ( FMap F proj₁ o ( (μ (a * One ) o λ y → FMap F (λ f → FMap F ( λ g → ( f , g )) y ) x ) o η One )) OneObj ) - ≈⟨ {!!} ⟩ - ( λ x → ( FMap F proj₁ o ( μ (a * One ) o (( λ y → FMap F (λ f → FMap F ( λ g → ( f , g )) y ) x ) o η One ) )) OneObj ) - ≈⟨ {!!} ⟩ - ( λ x → ( FMap F proj₁ o ( μ (a * One ) o (FMap F {!!} o η One ) )) OneObj ) - ≈⟨ {!!} ⟩ - ( λ x → ( FMap F proj₁ o ( μ (a * One ) o ( η (FObj F (a * One ) ) o FMap F (λ f → ( f , OneObj ) )) )) x ) + FMap F proj₁ o (μ (a * One ) o FMap F (λ f → ( FMap F (λ g → f , g) o η One ) OneObj )) ≈⟨ {!!} ⟩ FMap F proj₁ o ( μ (a * One ) o ( η (FObj F (a * One ) ) o FMap F ((λ g → (λ f → ( f , g ) )) OneObj ) ) ) ≈⟨⟩ @@ -126,7 +120,16 @@ ∎ ) where open ≈-Reasoning Sets hiding ( _o_ ) idlφ : {a : Obj Sets } { x : FObj F a } → FMap F (Iso.≅→ (mλ-iso isM)) (φ (unit , x)) ≡ x - idlφ = {!!} + idlφ {a} {x} = monoidal.≡-cong ( λ h → h x ) ( begin + ( λ x → FMap F (Iso.≅→ (mλ-iso isM)) (φ (unit , x)) ) + ≈⟨⟩ + ( λ x → FMap F proj₂ (μ (One * a ) (FMap F (λ f → FMap F (λ g → f , g) x) (η One OneObj)))) + ≈⟨ {!!} ⟩ + FMap F (id1 Sets a ) + ≈⟨ IsFunctor.identity ( Functor.isFunctor F ) ⟩ + id1 Sets (FObj F a) + ∎ ) where + open ≈-Reasoning Sets hiding ( _o_ ) Monad→Applicative : {l : Level } (m : Monad (Sets {l} ) ) → Applicative ( Monad.T m ) Monad→Applicative monad = record {