Mercurial > hg > Members > kono > Proof > category
changeset 677:3b23eeecd4f8
Product of Arrow is necessary ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 04 Nov 2017 15:49:26 +0900 |
parents | faf48511f69d |
children | 867ea41b331c |
files | pullback.agda |
diffstat | 1 files changed, 28 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Sat Nov 04 11:49:45 2017 +0900 +++ b/pullback.agda Sat Nov 04 15:49:26 2017 +0900 @@ -332,27 +332,37 @@ ( aprod : ( ai : { j k : Obj I} → (Hom I j k) → Obj A ) → ∀{ i j : Obj I} → IProduct A (Hom I i j) ai ) ( eqa : {a b : Obj A} → (f g : Hom A a b) → Equalizer A f g ) → NTrans I A (K A I (equc prod eqa )) Γ -limit-ε prod aprod eqa = record { +limit-ε = {!!} + +limit-ε' : + ( prod : ( ai : Obj I → Obj A ) → IProduct A (Obj I) ai ) + ( aprod : ( ai : { j k : Obj I} → (Hom I j k) → Obj A ) → ∀{ i j : Obj I} → IProduct A (Hom I i j) ai ) + ( eqa : {a b : Obj A} → (f g : Hom A a b) → Equalizer A f g ) + → NTrans I A (K A I {!!} ) Γ +limit-ε' prod aprod eqa = record { TMap = λ i → tmap i ; - isNTrans = record { commute = commute1 } + isNTrans = record { commute = {!!} } } where - lim : Obj A - lim = equc prod eqa p0 : Obj A p0 = iprod (prod (FObj Γ)) - e : Hom A lim p0 - e = let open ≈-Reasoning (A) in equalizer ( eqa (id1 A p0 ) ( id1 A p0 ) ) + Fcod : { j k : Obj I } ( u : Hom I j k ) → Obj A + Fcod = λ u → FObj Γ (Category.cod I u) + equ : ∀{ j k : Obj I } → Equalizer A + (iproduct (isIProduct (aprod Fcod {j} {k})) (λ h → A [ FMap Γ h o pi (prod (FObj Γ)) j ] )) + (iproduct (isIProduct (aprod Fcod {j} {k})) (λ h → pi (prod (FObj Γ)) k )) + equ {j} {k} = let open ≈-Reasoning (A) in + eqa (iproduct (isIProduct (aprod Fcod {j} {k})) (λ h → A [ FMap Γ h o pi (prod (FObj Γ)) j ] )) + (iproduct (isIProduct (aprod Fcod {j} {k})) (λ h → pi (prod (FObj Γ)) k )) + d : ∀{ j k : Obj I } → Obj A + d {j} {k} = equalizer-c (equ {j} {k} ) + e : ∀{ j k : Obj I } → Hom A d p0 + e {j} {k} = equalizer (equ {j} {k} ) proj : (i : Obj I) → Hom A p0 (FObj Γ i) proj = pi ( prod (FObj Γ) ) - tmap : (i : Obj I) → Hom A (FObj (K A I lim) i) (FObj Γ i) + tmap : (i : Obj I) → Hom A (FObj (K A I d) i) (FObj Γ i) tmap i = A [ proj i o e ] - e-inv : {i j : Obj I} {f : Hom I i j} → Hom A p0 ( equalizer-c (eqa (A [ FMap Γ f o proj i ]) ( proj j )) ) - e-inv = {!!} - e-iso : {i j : Obj I} {f : Hom I i j} → A [ A [ equalizer (eqa (A [ FMap Γ f o proj i ]) ( proj j )) o e-inv ] ≈ id1 A p0 ] - e-iso = {!!} - Fcod = λ {j} {k} u → FObj Γ k commute1 : {j k : Obj I} {u : Hom I j k} → - A [ A [ FMap Γ u o tmap j ] ≈ A [ tmap k o FMap (K A I lim) u ] ] + A [ A [ FMap Γ u o tmap j ] ≈ A [ tmap k o FMap (K A I d) u ] ] commute1 {j} {k} {u} = let open ≈-Reasoning (A) in begin FMap Γ u o tmap j ≈⟨⟩ @@ -362,6 +372,8 @@ ≈↑⟨ car (car ( pif=q (isIProduct (aprod Fcod ))) ) ⟩ (( pi (aprod Fcod ) u o iproduct (isIProduct (aprod Fcod)) (FMap Γ)) o pi (prod (FObj Γ)) j ) o e ≈⟨ {!!} ⟩ + (( pi (aprod Fcod ) u o iproduct (isIProduct (aprod Fcod)) (FMap Γ)) o pi (prod (FObj Γ)) j ) o e + ≈⟨ {!!} ⟩ (( pi (aprod Fcod ) u o iproduct (isIProduct (aprod Fcod)) (λ e → id1 A (FObj Γ (Category.cod I e)))) o pi (prod (FObj Γ)) k ) o e ≈⟨ car (car ( pif=q (isIProduct (aprod Fcod ))) ) ⟩ ( id1 A (FObj Γ k) o pi (prod (FObj Γ)) k ) o e @@ -370,10 +382,10 @@ ≈⟨⟩ proj k o e ≈↑⟨ idR ⟩ - (proj k o e ) o id1 A lim + (proj k o e ) o id1 A d ≈⟨⟩ - tmap k o FMap (K A I lim) u - ∎ + tmap k o FMap (K A I d) u + ∎ limit-from : ( prod : ( ai : Obj I → Obj A ) → IProduct A (Obj I) ai )