Mercurial > hg > Members > kono > Proof > category
changeset 10:3ef6a17353d1
reasoning
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jul 2013 18:45:48 +0900 |
parents | 3207ae6d4442 |
children | 2cbecadc56c1 |
files | nat.agda |
diffstat | 1 files changed, 12 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/nat.agda Sun Jul 07 18:16:46 2013 +0900 +++ b/nat.agda Sun Jul 07 18:45:48 2013 +0900 @@ -127,27 +127,26 @@ ( Hom A b ( FObj T c )) -> ( Hom A a ( FObj T b)) -> Hom A a ( FObj T c ) join c g f = A [ Trans μ c o A [ FMap T g o f ] ] -open import Relation.Binary renaming (Trans to Trans1 ) + open import Relation.Binary.Core renaming (Trans to Trans1 ) -open import Relation.Binary.PropositionalEquality using (_≡_; refl) -module ≈-Reasoning where +module ≈-Reasoning {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) where -- The code in Relation.Binary.EqReasoning cannot handle -- heterogeneous equalities, hence the code duplication here. - refl-hom : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } + refl-hom : {a b : Obj A } { x y z : Hom A a b } → A [ x ≈ x ] - refl-hom = \a -> IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory a )) + refl-hom = IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory A )) - trans-hom : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } + trans-hom : {a b : Obj A } { x y z : Hom A a b } → A [ x ≈ y ] → A [ y ≈ z ] → A [ x ≈ z ] - trans-hom a b c = ( IsEquivalence.trans (IsCategory.isEquivalence ( Category.isCategory a ))) b c + trans-hom b c = ( IsEquivalence.trans (IsCategory.isEquivalence ( Category.isCategory A ))) b c - infixr 2 _∎_ - infixr 2 _≈⟨_!_⟩_ + infixr 2 _∎ + infixr 2 _≈⟨_⟩_ infix 1 begin_ data IsRelatedTo {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } ( x y : Hom A a b ) : @@ -158,13 +157,13 @@ IsRelatedTo A x y → A [ x ≈ y ] begin relTo x≈y = x≈y - _≈⟨_!_⟩_ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) -> {a b : Obj A } + _≈⟨_⟩_ : {a b : Obj A } ( x : Hom A a b ) → { y z : Hom A a b } → A [ x ≈ y ] → IsRelatedTo A y z → IsRelatedTo A x z - a ≈⟨ _ ! x≈y ⟩ relTo y≈z = relTo ( trans-hom a x≈y y≈z ) + a ≈⟨ x≈y ⟩ relTo y≈z = relTo ( trans-hom x≈y y≈z ) - _∎_ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } (x : Hom A a b) → IsRelatedTo A x x - a ∎ _ = relTo ( refl-hom a ) + _∎ : {a b : Obj A } (x : Hom A a b) → IsRelatedTo A x x + _ ∎ = relTo ( refl-hom ) open Kleisli Lemma7 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) -> @@ -179,8 +178,6 @@ Lemma7 c k = {!!} - - Lemma8 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } { η : NTrans A A identityFunctor T }