Mercurial > hg > Members > kono > Proof > category
changeset 610:3fb4d834c349
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 12 Jun 2017 18:11:23 +0900 |
parents | d686d7ae38e0 |
children | b1b5c6b4c570 |
files | freyd2.agda |
diffstat | 1 files changed, 23 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd2.agda Mon Jun 12 16:35:34 2017 +0900 +++ b/freyd2.agda Mon Jun 12 18:11:23 2017 +0900 @@ -109,19 +109,31 @@ open LimitPreserve -- Representable Functor U preserve limit , so K{*}↓U is complete +-- +-- HomA A b = λ a → Hom A a b : Functor A Sets +-- : Functor Sets A + +UpreserveLimit0 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) + (comp : Complete A A) (b : Obj A ) + (Γ : Functor I A) (limita : Limit A I Γ) → + IsLimit Sets I (HomA A b ○ Γ) (FObj (HomA A b) (a0 limita)) (LimitNat A I Sets Γ (a0 limita) (t0 limita) (HomA A b)) +UpreserveLimit0 A I comp b Γ lim = record { + limit = λ a t → limit1 a t + ; t0f=t = λ {a t i} → {!!} + ; limit-uniqueness = λ {b} {t} {f} t0f=t → {!!} + } where + ta : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (HomA A b ○ Γ)) → NTrans I A (K A I {!!}) Γ + ta a t = {!!} + limit1 : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (HomA A b ○ Γ)) + → Hom Sets a (FObj (HomA A b) (a0 lim)) + limit1 a t = Sets [ FMap (HomA A b) (limit (isLimit lim) (FObj {!!} b) (ta a t )) o TMap {!!} b ] + UpreserveLimit : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) - (comp : Complete A A) - (U : Functor A (Sets) ) - (a : Obj A ) - (R : Representable A U a ) → LimitPreserve A I Sets U -UpreserveLimit A I comp U a R = record { - preserve = λ Γ lim → record { - limit = λ a t → {!!} - ; t0f=t = λ {a t i} → ? - ; limit-uniqueness = λ {a} {t} {f} t0f=t → {!!} - } - } + (comp : Complete A A) (b : Obj A ) → LimitPreserve A I Sets (HomA A b) +UpreserveLimit A I comp b = record { + preserve = λ Γ lim → UpreserveLimit0 A I comp b Γ lim + } -- K{*}↓U has preinitial full subcategory then U is representable -- K{*}↓U is complete, so it has initial object