Mercurial > hg > Members > kono > Proof > category
changeset 251:40947f08bab6
comment
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 09 Sep 2013 16:03:14 +0900 |
parents | a1e2228c2a6b |
children | e0835b8dd51b |
files | equalizer.agda |
diffstat | 1 files changed, 13 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Mon Sep 09 15:56:34 2013 +0900 +++ b/equalizer.agda Mon Sep 09 16:03:14 2013 +0900 @@ -31,7 +31,7 @@ equalizer = e -- --- Flat Equational Definition of Equalizer +-- Burroni's Flat Equational Definition of Equalizer -- record Burroni { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) (e : Hom A c a) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field @@ -79,6 +79,7 @@ g o ( e o h ) ∎ +-------------------------------- -- -- -- An isomorphic arrow c' to c makes another equalizer @@ -143,6 +144,7 @@ j ∎ +-------------------------------- -- -- If we have two equalizers on c and c', there are isomorphic pair h, h' -- @@ -173,10 +175,10 @@ -- h = j e f -> j = j' -- -c-iso→' : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) +e←e' : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) → ( keqa : Equalizer A (k eqa' e (fe=ge eqa)) (A [ f o e' ]) (A [ g o e' ]) ) → A [ A [ e' o c-iso-l eqa eqa' keqa ] ≈ e ] -c-iso→' {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' keqa = let open ≈-Reasoning (A) in begin +e←e' {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' keqa = let open ≈-Reasoning (A) in begin e' o c-iso-l eqa eqa' keqa ≈⟨⟩ e' o k eqa' e (fe=ge eqa) @@ -186,10 +188,10 @@ e ∎ -c-iso←' : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) +e'←e : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) → ( keqa : Equalizer A (k eqa' e (fe=ge eqa)) (A [ f o e' ]) (A [ g o e' ]) ) → A [ A [ e o c-iso-r eqa eqa' keqa ] ≈ e' ] -c-iso←' {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' keqa = let open ≈-Reasoning (A) in begin +e'←e {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' keqa = let open ≈-Reasoning (A) in begin e o c-iso-r eqa eqa' keqa ≈⟨⟩ e o k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') ) @@ -232,7 +234,7 @@ k eqa' e (fe=ge eqa ) ≈⟨ uniqueness eqa' ( begin e' o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c)) - ≈↑⟨ car (c-iso←' eqa eqa' keqa ) ⟩ + ≈↑⟨ car (e'←e eqa eqa' keqa ) ⟩ ( e o equalizer keqa' ) o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c)) ≈↑⟨ assoc ⟩ e o ( equalizer keqa' o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c))) @@ -249,6 +251,7 @@ +-------------------------------- ---- -- -- An equalizer satisfies Burroni equations @@ -373,6 +376,10 @@ j ∎ +-------------------------------- +-- +-- Bourroni equations gives an Equalizer +-- lemma-equ2 : {a b c : Obj A} (f g : Hom A a b) (e : Hom A c a ) → ( bur : Burroni A {c} {a} {b} f g e ) → Equalizer A {c} {a} {b} (α bur f g e) f g