Mercurial > hg > Members > kono > Proof > category
changeset 88:419923b149ca
on going
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 28 Jul 2013 09:10:44 +0900 |
parents | 4690953794c4 |
children | 1633ea093c16 |
files | cat-utility.agda nat.agda |
diffstat | 2 files changed, 16 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/cat-utility.agda Sun Jul 28 08:04:01 2013 +0900 +++ b/cat-utility.agda Sun Jul 28 09:10:44 2013 +0900 @@ -138,9 +138,14 @@ { μR : NTrans A A ( (UR ○ FR) ○ ( UR ○ FR )) ( UR ○ FR ) } ( Adj : Adjunction A B UR FR ηR εR ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where + -- MObj : (a : Obj A) -> Obj A + -- MObj a = FObj ( UR ○ FR ) a + -- MMap : {a b c d : Obj A} -> (f : Hom A a b) -> Hom A (FObj T a) (FObj T b) + -- MMap f = FMap ( UR ○ FR ) f field T=UF : T ≃ (UR ○ FR) μ=UεF : {x : Obj A } -> A [ TMap μR x ≈ FMap UR ( TMap εR ( FObj FR x ) ) ] -- ηR=η : {x : Obj A } -> A [ TMap ηR x ≈ TMap η x ] -- μR=μ : {x : Obj A } -> A [ TMap μR x ≈ TMap μ x ] +
--- a/nat.agda Sun Jul 28 08:04:01 2013 +0900 +++ b/nat.agda Sun Jul 28 09:10:44 2013 +0900 @@ -216,13 +216,13 @@ field KMap : Hom A a ( FObj T b ) -KHom = \(a b : Obj A) -> KleisliHom { c₁} {c₂} {ℓ} {A} {T} a b +open KleisliHom +KHom = \(a b : Obj A) -> KleisliHom {c₁} {c₂} {ℓ} {A} {T} a b K-id : {a : Obj A} → KHom a a K-id {a = a} = record { KMap = TMap η a } open import Relation.Binary.Core -open KleisliHom _⋍_ : { a : Obj A } { b : Obj A } (f g : KHom a b ) -> Set ℓ _⋍_ {a} {b} f g = A [ KMap f ≈ KMap g ] @@ -555,17 +555,22 @@ { μ_K : NTrans A A (( U_K ○ F_K ) ○ ( U_K ○ F_K )) ( U_K ○ F_K ) } ( K : Monad A (U_K ○ F_K) η_K μ_K ) ( AdjK : Adjunction A B U_K F_K η_K ε_K ) - (ResK : MResolution A B T M U_K F_K AdjK ) + ( RK : MResolution A B T M U_K F_K AdjK ) where + KtoT : {!!} + KtoT = {!!} RHom = \(a b : Obj A) -> KleisliHom {c₁} {c₂} {ℓ} {A} { U_K ○ F_K } a b - kfmap : {a b : Obj A} (f : RHom a b) -> Hom B (FObj F_K a) (FObj F_K b) - kfmap {_} {b} f = B [ TMap ε_K (FObj F_K b) o FMap F_K (KMap f) ] + RMap : {a b : Obj A} -> (f : KHom a b) -> Hom A a (FObj ( U_K ○ F_K ) b) + RMap f = KtoT (RK T=UF) f + + kfmap : {a b : Obj A} (f : KHom a b) -> Hom B (FObj F_K a) (FObj F_K b) + kfmap {_} {b} f = B [ TMap ε_K (FObj F_K b) o FMap F_K (RMap f) ] K_T : Functor KleisliCategory B K_T = record { FObj = FObj F_K - ; FMap = {!!} -- kfmap + ; FMap = kfmap ; isFunctor = record { ≈-cong = {!!} -- ≈-cong ; identity = {!!} -- identity