changeset 466:44bd77c80555

clean up
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 04 Mar 2017 16:57:58 +0900
parents d3cd28a71b3f
children ba042c2d3ff5
files discrete.agda limit-to.agda
diffstat 2 files changed, 25 insertions(+), 29 deletions(-) [+]
line wrap: on
line diff
--- a/discrete.agda	Sat Mar 04 16:26:57 2017 +0900
+++ b/discrete.agda	Sat Mar 04 16:57:58 2017 +0900
@@ -21,19 +21,19 @@
 --     missing arrows are constrainted by TwoHom data
 
 data TwoHom {c₁ c₂ : Level } : TwoObject {c₁}  → TwoObject {c₁} → Set c₂ where
-   id-t0 : TwoHom t0 t0
-   id-t1 : TwoHom t1 t1
+   id-t0 :    TwoHom t0 t0
+   id-t1 :    TwoHom t1 t1
    arrow-f :  TwoHom t0 t1
    arrow-g :  TwoHom t0 t1
 
 
 _×_ :  ∀ {c₁  c₂}  → {a b c : TwoObject {c₁}} →  TwoHom {c₁} {c₂} b c  →  TwoHom {c₁} {c₂} a b   →  TwoHom {c₁} {c₂} a c 
-_×_ {_}  {_}  {t0} {t1} {t1}  id-t1   arrow-f   =   arrow-f 
-_×_ {_}  {_}  {t0} {t1} {t1}  id-t1   arrow-g  =   arrow-g 
-_×_ {_}  {_}  {t1} {t1} {t1}  id-t1   id-t1    =   id-t1 
-_×_ {_}  {_}  {t0} {t0} {t1}  arrow-f   id-t0    =   arrow-f 
-_×_ {_}  {_}  {t0} {t0} {t1}  arrow-g   id-t0    =   arrow-g 
-_×_ {_}  {_}  {t0} {t0} {t0}  id-t0   id-t0    =   id-t0 
+_×_ {_}  {_}  {t0} {t1} {t1}  id-t1   arrow-f  = arrow-f 
+_×_ {_}  {_}  {t0} {t1} {t1}  id-t1   arrow-g  = arrow-g 
+_×_ {_}  {_}  {t1} {t1} {t1}  id-t1   id-t1    = id-t1 
+_×_ {_}  {_}  {t0} {t0} {t1}  arrow-f id-t0    = arrow-f 
+_×_ {_}  {_}  {t0} {t0} {t1}  arrow-g id-t0    = arrow-g 
+_×_ {_}  {_}  {t0} {t0} {t0}  id-t0   id-t0    = id-t0 
 
 open TwoHom
 
@@ -43,24 +43,22 @@
 --   It can be proved without TwoHom constraints
 
 assoc-× :   {c₁  c₂ : Level } {a b c d : TwoObject  {c₁} }
-       {f : (TwoHom {c₁}  {c₂ } c d )} →
-       {g : (TwoHom b c )} →
-       {h : (TwoHom a b )} →
+       {f : (TwoHom {c₁}  {c₂ } c d )} → {g : (TwoHom b c )} → {h : (TwoHom a b )} →
        ( f × (g × h)) ≡ ((f × g) × h )
-assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} { id-t0   }{ id-t0   }{ id-t0  } = refl
-assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-f }{ id-t0   }{ id-t0  } = refl
-assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-g }{ id-t0   }{ id-t0  } = refl
-assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1   }{ arrow-f }{ id-t0  } = refl
-assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1   }{ arrow-g }{ id-t0  } = refl
+assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} { id-t0   }{ id-t0   }{ id-t0   } = refl
+assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-f }{ id-t0   }{ id-t0   } = refl
+assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-g }{ id-t0   }{ id-t0   } = refl
+assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1   }{ arrow-f }{ id-t0   } = refl
+assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1   }{ arrow-g }{ id-t0   } = refl
 assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} { id-t1   }{ id-t1   }{ arrow-f } = refl
 assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} { id-t1   }{ id-t1   }{ arrow-g } = refl
-assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} { id-t1   }{ id-t1   }{ id-t1  } = refl
+assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} { id-t1   }{ id-t1   }{ id-t1   } = refl
 
 TwoId :  {c₁  c₂ : Level } (a : TwoObject  {c₁} ) →  (TwoHom {c₁}  {c₂ } a a )
 TwoId {_} {_} t0 = id-t0 
 TwoId {_} {_} t1 = id-t1 
 
-open import Relation.Binary.PropositionalEquality renaming ( cong to ≡-cong )
+open import Relation.Binary.PropositionalEquality 
 
 TwoCat : {c₁ c₂ : Level  } →  Category   c₁  c₂  c₂
 TwoCat   {c₁}  {c₂} = record {
--- a/limit-to.agda	Sat Mar 04 16:26:57 2017 +0900
+++ b/limit-to.agda	Sat Mar 04 16:57:58 2017 +0900
@@ -175,27 +175,25 @@
          e = equlimit A f g comp
          c : Obj A 
          c = limit-c comp Γ
-         natL : NTrans I A (K A I c) Γ
-         natL = limit-u comp Γ
-         lim : Limit A I Γ c natL
+         lim : Limit A I Γ c ( limit-u comp Γ )
          lim =  isLimit comp  Γ 
-         nat0 : (d : Obj A) (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → NTrans I A (K A I d) Γ
-         nat0 = IndexNat A f g 
+         inat : (d : Obj A) (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → NTrans I A (K A I d) Γ
+         inat = IndexNat A f g 
          k : {d : Obj A}  (h : Hom A d a) → A [ A [ f  o  h ] ≈ A [ g  o h ] ] → Hom A d c
-         k {d} h fh=gh  =  limit lim d (nat0 d h fh=gh )
+         k {d} h fh=gh  =  limit lim d (inat d h fh=gh )
          ek=h :  (d : Obj A ) (h : Hom A d a ) →  ( fh=gh : A [ A [ f  o  h ] ≈ A [ g  o h ] ] )  → A [ A [ e o k h fh=gh ] ≈ h ]
          ek=h d h fh=gh = let open  ≈-Reasoning A in  begin
                     e o k h fh=gh
                 ≈⟨⟩
                     TMap (limit-u comp Γ) t0  o k h fh=gh
-                ≈⟨ t0f=t lim {d} {nat0 d h fh=gh } {t0}  ⟩
-                    TMap (nat0 d h fh=gh) t0
+                ≈⟨ t0f=t lim {d} {inat d h fh=gh } {t0}  ⟩
+                    TMap (inat d h fh=gh) t0
                 ≈⟨⟩
                     h

          uniq-nat :  {i : Obj I} →  (d : Obj A )  (h : Hom A d a ) ( k' : Hom A d c ) 
                        ( fh=gh : A [ A [ f  o  h ] ≈ A [ g  o h ] ]) → A [ A [ e o k' ] ≈ h ] →  
-                       A [ A [ TMap (limit-u comp Γ) i o k' ] ≈ TMap (nat0 d h fh=gh) i ]
+                       A [ A [ TMap (limit-u comp Γ) i o k' ] ≈ TMap (inat d h fh=gh) i ]
          uniq-nat {t0} d h k' fh=gh ek'=h =  let open  ≈-Reasoning A in begin
                     TMap (limit-u comp Γ) t0 o k'
                 ≈⟨⟩
@@ -203,7 +201,7 @@
                 ≈⟨ ek'=h ⟩
                     h
                 ≈⟨⟩
-                    TMap (nat0 d h fh=gh) t0
+                    TMap (inat d h fh=gh) t0

          uniq-nat {t1} d h k' fh=gh ek'=h =  let open  ≈-Reasoning A in begin
                     TMap (limit-u comp Γ) t1 o k'
@@ -220,7 +218,7 @@
                 ≈⟨ cdr  ek'=h ⟩
                     f o h
                 ≈⟨⟩
-                    TMap (nat0 d h fh=gh) t1
+                    TMap (inat d h fh=gh) t1

          uniquness :  (d : Obj A ) (h : Hom A d a ) →  ( fh=gh : A [ A [ f  o  h ] ≈ A [ g  o h ] ] )  →
                  ( k' : Hom A d c )