Mercurial > hg > Members > kono > Proof > category
changeset 123:44c58c27d12d
problems written Comparison Functor on EM
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 02 Aug 2013 08:36:44 +0900 |
parents | f8fbd5ecec97 |
children | aaeb92b58647 |
files | comparison-em.agda |
diffstat | 1 files changed, 18 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/comparison-em.agda Fri Aug 02 08:21:32 2013 +0900 +++ b/comparison-em.agda Fri Aug 02 08:36:44 2013 +0900 @@ -33,10 +33,13 @@ T^K = U^K ○ F^K -M : Monad A (U^K ○ F^K ) η^K μ^K +μ^K' : NTrans A A (( U^K ○ F^K ) ○ ( U^K ○ F^K )) ( U^K ○ F^K ) +μ^K' = UεF A B U^K F^K ε^K + +M : Monad A (U^K ○ F^K ) η^K μ^K' M = Adj2Monad A B {U^K} {F^K} {η^K} {ε^K} Adj^K -open import em-category {c₁} {c₂} {ℓ} {A} { U^K ○ F^K } { η^K } { μ^K } { M } +open import em-category {c₁} {c₂} {ℓ} {A} { U^K ○ F^K } { η^K } { μ^K' } { M } open Functor open NTrans @@ -46,7 +49,7 @@ emkobj : Obj B -> EMObj emkobj b = record { - a = FObj U^K b ; phi = A [ FMap U^K o TMap ε^K b ] ; isAlgebra = record { identity = identity1; eval = eval1 } + a = FObj U^K b ; phi = FMap U^K (TMap ε^K b) ; isAlgebra = record { identity = identity1; eval = eval1 } } where identity1 : ? identity1 = ? @@ -69,25 +72,25 @@ ; distr = distr1 } } where - identity : {a : Obj A} → B [ emkmap (EM-id {a}) ≈ id1 B (FObj F^K a) ] - identity {a} = let open ≈-Reasoning (B) in + identity : {a : Obj B} → emkmap (id1 B a) ≗ EM-id {emkobj a} + identity {a} = let open ≈-Reasoning (A) in begin - emkmap (EM-id {a}) + EMap (emkmap (id1 B a)) ≈⟨ ? ⟩ - id1 B (FObj F^K a) + EMap (EM-id {emkobj a}) ∎ - ≈-cong : {a b : Obj A} -> {f g : EMHom a b} → A [ EMap f ≈ EMap g ] → B [ emkmap f ≈ emkmap g ] - ≈-cong {a} {b} {f} {g} f≈g = let open ≈-Reasoning (B) in + ≈-cong : {a b : Obj B} -> {f g : Hom B a b} → B [ f ≈ g ] → emkmap f ≗ emkmap g + ≈-cong {a} {b} {f} {g} f≈g = let open ≈-Reasoning (A) in begin - emkmap f + EMap (emkmap f) ≈⟨ ? ⟩ - emkmap g + EMap (emkmap g) ∎ - distr1 : {a b c : Obj A} {f : EMHom a b} {g : EMHom b c} → B [ emkmap (g ∙ f) ≈ (B [ emkmap g o emkmap f ] )] - distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (B) in + distr1 : {a b c : Obj B} {f : Hom B a b} {g : Hom B b c} → ( (emkmap (B [ g o f ])) ≗ (emkmap g ∙ emkmap f) ) + distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in begin - emkmap (g ∙ f) + EMap (emkmap (B [ g o f ] )) ≈⟨ ? ⟩ - emkmap g o emkmap f + EMap (emkmap g ∙ emkmap f) ∎