Mercurial > hg > Members > kono > Proof > category
changeset 285:46d4ad55b948
commutativity continue...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 23 Sep 2013 20:54:30 +0900 |
parents | 4be696e3fd94 |
children | 981253b05b0b |
files | pullback.agda |
diffstat | 1 files changed, 34 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Mon Sep 23 19:12:45 2013 +0900 +++ b/pullback.agda Mon Sep 23 20:54:30 2013 +0900 @@ -336,7 +336,7 @@ -- p | | -- ^ ε i | | ε j -- | | | --- | e = equalizer (f pi) (g pi') | | +-- | e = equalizer (id p) (id p) | | -- | v v -- lim <------------------ d' a i = Γ i ------------> Γ j = a j -- k ( product pi ) Γ f @@ -359,19 +359,40 @@ } } where tmap : (i : Obj I) → Hom A (FObj (K I lim) i) (FObj Γ i) - tmap i = A [ ( proj i ) o e ] + tmap i = A [ proj i o e ] commute1 : {i j : Obj I} {f : Hom I i j} → A [ A [ FMap Γ f o tmap i ] ≈ A [ tmap j o FMap (K I lim) f ] ] - commute1 {i} {j} {f} = {!!} + commute1 {i} {j} {f} = let open ≈-Reasoning (A) in begin + FMap Γ f o tmap i + ≈⟨⟩ + FMap Γ f o ( proj i o e ) + ≈⟨ assoc ⟩ + ( FMap Γ f o proj i ) o e + ≈↑⟨ car ( pif=q ( prod p (FObj Γ) proj ) {!!} ) ⟩ + {!!} + ≈⟨ {!!} ⟩ + (proj j o ( product ( prod p (FObj Γ) proj ) ) proj ) o e + ≈⟨ car ( cdr ( ip-cong ( prod p (FObj Γ) proj ) (λ i₁ → sym idR ) )) ⟩ + (proj j o ( product ( prod p (FObj Γ) proj ) ) (λ i₁ → A [ proj i₁ o id1 A p ]) ) o e + ≈⟨ car ( cdr ( ip-uniqueness ( prod p (FObj Γ) proj ))) ⟩ + (proj j o id1 A p ) o e + ≈⟨ car idR ⟩ + proj j o e + ≈↑⟨ idR ⟩ + (proj j o e ) o id1 A lim + ≈⟨⟩ + tmap j o FMap (K I lim) f + ∎ + limit-from : - ( prod : (p : Obj A) ( ai : Obj I → Obj A ) ( pi : (i : Obj I) → Hom A p ( ai i ) ) + ( prod : (p : Obj A) ( ai : Obj I → Obj A ) ( pi : (i : Obj I) → Hom A p ( ai i ) ) → IProduct {c₁'} A (Obj I) p ai pi ) - ( eqa : {a b c : Obj A} → (e : Hom A c a ) → (f g : Hom A a b) → Equalizer A e f g ) - ( Γ : Functor I A ) → - ( lim p : Obj A ) ( e : Hom A lim p ) - ( proj : (i : Obj I ) → Hom A p (FObj Γ i) ) → - Limit I Γ lim ( limit-ε prod eqa Γ lim p e proj ) + ( eqa : {a b c : Obj A} → (e : Hom A c a ) → (f g : Hom A a b) → Equalizer A e f g ) + ( Γ : Functor I A ) → ( lim p : Obj A ) -- limit to be made + ( e : Hom A lim p ) -- existing of equalizer + ( proj : (i : Obj I ) → Hom A p (FObj Γ i) ) -- existing of product ( projection actually ) + → Limit I Γ lim ( limit-ε prod eqa Γ lim p e proj ) limit-from prod eqa Γ lim p e proj = record { limit = λ a t → limit1 a t ; t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; @@ -404,11 +425,11 @@ ≈↑⟨ ip-uniqueness (prod p (FObj Γ) proj) ⟩ product (prod p (FObj Γ) proj) (λ i → ( proj i o ( e o f ) ) ) ≈⟨ ip-cong (prod p (FObj Γ) proj) ( λ i → begin - proj i o ( e o f ) + proj i o ( e o f ) ≈⟨ assoc ⟩ - ( proj i o e ) o f - ≈⟨ lim=t {i} ⟩ - TMap t i + ( proj i o e ) o f + ≈⟨ lim=t {i} ⟩ + TMap t i ∎ ) ⟩ product (prod p (FObj Γ) proj) (TMap t) ∎ ) ⟩