Mercurial > hg > Members > kono > Proof > category
changeset 1002:471f9b977920
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 09 Mar 2021 13:24:20 +0900 |
parents | 5861128f1e49 |
children | ece5de97fdd7 |
files | src/yoneda.agda |
diffstat | 1 files changed, 17 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/yoneda.agda Tue Mar 09 12:50:52 2021 +0900 +++ b/src/yoneda.agda Tue Mar 09 13:24:20 2021 +0900 @@ -326,8 +326,7 @@ → SetsAop [ SetsAop [ FMap YonedaFunctor f o g ] ≈ SetsAop [ FMap YonedaFunctor f o h ] ] → SetsAop [ g ≈ h ] Yoneda-injective {a} {b} {x} {y} g h f yg=yh = begin - TMap g _ ≈⟨ {!!} ⟩ - -- {!!} ≈⟨ {!!} ⟩ -- Hom Sets (FObj y x₁) (FObj (FObj YonedaFunctor a) x₁) + TMap g _ ≈⟨ {!!} ⟩ TMap h _ ∎ where open ≈-Reasoning Sets hoge : (x₁ : Obj A) → FObj y x₁ -- Hom Sets (FObj y x₁) (FObj (FObj YonedaFunctor a) x₁) @@ -343,25 +342,33 @@ sur : {a a' : Obj A} (g : Hom B (FObj F a) (FObj F a')) → Hom A a a' surjective : {a a' : Obj A} (g : Hom B (FObj F a) (FObj F a')) → B [ FMap F (sur g) ≈ g ] +open CatSurjective + CatEpiR : { c₁ c₂ ℓ c₁' c₂' ℓ' : Level} ( A : Category c₁ c₂ ℓ ) ( B : Category c₁' c₂' ℓ' ) (F : Functor A B) → {a a' : Obj A } {b : Obj B} (g h : Hom B (FObj F a') b) → ( f : Hom A a a' ) → (B [ B [ g o FMap F f ] ≈ B [ h o FMap F f ] ] → B [ g ≈ h ]) → CatSurjective A B F -CatEpiR A B F g h f eq = record { sur = {!!} ; surjective = {!!} } +CatEpiR A B F g h f eq = record { sur = λ g → {!!} ; surjective = {!!} } where + ylem22 : {a a' : Obj A} (i : Hom B (FObj F a) (FObj F a')) → B [ FMap F {!!} ≈ i ] + ylem22 i = begin + FMap F {!!} ≈⟨ {!!} ⟩ + i ∎ + where + open ≈-Reasoning B CatEpi : { c₁ c₂ ℓ c₁' c₂' ℓ' : Level} ( A : Category c₁ c₂ ℓ ) ( B : Category c₁' c₂' ℓ' ) (F : Functor A B) - → CatSurjective A B F + → (s : CatSurjective A B F ) → {a a' : Obj A } {b : Obj B} (g h : Hom B (FObj F a') b) - → ( f : (g h : Hom B (FObj F a') b) → Hom A a a' ) - → B [ B [ g o FMap F ( f g h ) ] ≈ B [ h o FMap F (f g h ) ] ] → B [ g ≈ h ] -CatEpi A B F s g h f gf=hf = begin + → (f : {a a' : Obj A } {b : Obj B} (g h : Hom B (FObj F a') b) → Hom A a a' ) + → B [ B [ g o FMap F (f {a} {a'} g h ) ] ≈ B [ h o FMap F (f g h )] ] → B [ g ≈ h ] +CatEpi A B F s g h f eq = begin g ≈⟨ {!!} ⟩ h ∎ where open ≈-Reasoning B - sj : B [ FMap F ( CatSurjective.sur s (FMap F (f g h))) ≈ FMap F (f g h) ] - sj = CatSurjective.surjective s (FMap F (f g h)) + -- sj : B [ FMap F ( CatSurjective.sur s (FMap F (f g h))) ≈ FMap F (f g h) ] + -- sj = CatSurjective.surjective s (FMap F (f g h)) Yoneda-surjective : CatSurjective A SetsAop YonedaFunctor Yoneda-surjective = record { sur = λ {a} {a'} g → f g ; surjective = λ g → @@ -381,7 +388,7 @@ TMap g _ ≈⟨ {!!} ⟩ TMap h _ ∎ where - open ≈-Reasoning (Sets) + open ≈-Reasoning Sets s : CatSurjective A SetsAop YonedaFunctor s = Yoneda-surjective