Mercurial > hg > Members > kono > Proof > category
changeset 796:472a615c6e09 ccc
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 23 Apr 2019 05:12:42 +0900 |
parents | 030c5b87ed78 |
children | 6a47f0030adf |
files | limit-to.agda |
diffstat | 1 files changed, 5 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/limit-to.agda Mon Apr 22 18:00:03 2019 +0900 +++ b/limit-to.agda Tue Apr 23 05:12:42 2019 +0900 @@ -6,6 +6,8 @@ open import cat-utility open import HomReasoning open import Relation.Binary.Core +open import Relation.Binary.PropositionalEquality hiding ([_]) + open import discrete @@ -59,7 +61,7 @@ fmap {t0} {t1} arrow-f = f fmap {t0} {t1} arrow-g = g ≈-cong : {a : Obj T} {b : Obj T} {f g : Hom T a b} → T [ f ≈ g ] → A [ fmap f ≈ fmap g ] - ≈-cong {a} {b} {f} {.f} refl = let open ≈-Reasoning A in refl-hom + ≈-cong {a} {b} {f} {_} refl = let open ≈-Reasoning A in refl-hom identity : (x : Obj T ) → A [ fmap (id1 T x) ≈ id1 A (fobj x) ] identity t0 = let open ≈-Reasoning A in refl-hom identity t1 = let open ≈-Reasoning A in refl-hom @@ -242,6 +244,8 @@ --- Product from Limit ( given Discrete→A functor Γ and pnat : K → Γ) +open import Relation.Binary.PropositionalEquality + open DiscreteHom plimit : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (S : Set c₁)