changeset 874:484f19f16712

SC
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 09 Apr 2020 18:12:33 +0900
parents 0b5fb015009c
children ad42e7661215
files CCCGraph.agda CCCGraph1.agda
diffstat 2 files changed, 66 insertions(+), 148 deletions(-) [+]
line wrap: on
line diff
--- a/CCCGraph.agda	Thu Apr 09 09:47:00 2020 +0900
+++ b/CCCGraph.agda	Thu Apr 09 18:12:33 2020 +0900
@@ -178,6 +178,72 @@
        IsFunctor.≈-cong isf refl = refl
        IsFunctor.distr isf {a} {b} {c} {g} {f} = extensionality Sets ( λ z → distr {a} {b} {c} {g} {f} z ) 
 
+   data Sequence {G : Graph} : (a b : Objs G) → Set where
+      sid : (a : Objs G) → Sequence a a
+      sprod : {a b c d : Objs G} → Sequence a b → Sequence c d → Sequence (a ∧ c) (b ∧ d)
+      snext : {a b c : vertex G} → edge G b c → Sequence {G} (atom a) (atom b) → Sequence (atom a) (atom c)
+
+   _+_ : {G : Graph} → {a b c : Objs G} → Sequence b c → Sequence a b → Sequence a c
+   sid a + g = g
+   sprod f g + sid _ = sprod f g
+   sprod f g + sprod h h₁ = sprod ( f + h ) ( g + h₁ )
+   snext f g + sid _ = snext f g
+   snext f g + snext x h = snext f ( g + snext x h )
+
+   SC :  Graph → Category  Level.zero Level.zero Level.zero
+   SC G = record {
+            Obj  =  Objs G;
+            Hom = λ a b →  Sequence a b ;
+            _o_ =  λ{a} {b} {c} x y → x + y ;
+            _≈_ =  λ x y → x  ≡ y ;
+            Id  =  λ{a} → sid a ;
+            isCategory  = record {
+                    isEquivalence =  record {refl = refl ; trans = trans ; sym = sym } ;
+                    identityL  = λ {a b f} → identityL {a} {b} {f} ; 
+                    identityR  = λ {a b f} → identityR {a} {b} {f} ; 
+                    o-resp-≈  = λ {a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i}  ; 
+                    associative  = λ{a b c d f g h } → associative  f g h
+               }
+           }  where
+               identityL : {A B : Objs G} {f : Sequence A B} → (sid B + f) ≡ f
+               identityL {a} {b} {f} = refl
+               identityR : {A B : Objs G} {f : Sequence A B} → (f + sid A) ≡ f
+               identityR {a} {a} {sid a} = refl
+               identityR {_} {_} {sprod f f₁} = refl
+               identityR {_} {_} {snext x f} = refl
+               associative : {a b c d : Objs G} (f : Sequence c d) (g : Sequence b c) (h : Sequence a b) →
+                            (f + (g + h)) ≡ ((f + g) + h)
+               associative (sid a) g h = refl
+               associative (sprod f f₁) (sid _) h = refl
+               associative (sprod f f₁) (sprod g g₁) (sid _) = refl
+               associative (sprod f f₁) (sprod g g₁) (sprod h h₁) = cong₂ (λ j k → sprod j k ) (associative f g h) (associative f₁  g₁  h₁)
+               associative (snext x f) (sid _) h = refl
+               associative (snext x f) (snext y g) (sid _) = refl
+               associative (snext x f) (snext y g) (snext z h) = cong ( λ k → snext x k ) (associative f (snext y g) (snext z h))
+               o-resp-≈  : {A B C : Objs G} {f g : Sequence A B} {h i : Sequence B C} →
+                            f ≡ g → h ≡ i → (h + f) ≡ (i + g)
+               o-resp-≈  refl refl  = refl
+
+   DD : (G : Graph) → Category  Level.zero Level.zero Level.zero
+   DD G = GraphtoCat (record { vertex = Objs G ; edge = Arrow G })
+   scmap : {G : Graph} { a b : Objs G } → Hom (DD G) a b → Hom (SC G) a b
+   scmap = ?
+
+   GtoSC : (G : Graph ) → Functor (DD G) (SC G)
+   FObj (GtoSC G) a  = a
+   FMap (GtoSC G) {a} {b} f = ?
+   isFunctor (GtoSC G) = isf where
+       _++_ = Category._o_ (DD G)
+       ++idR = IsCategory.identityR ( Category.isCategory ( DD G ) )
+       distr : {a b c d : Obj (DD G)}  { f : Hom (DD G) b c } { g : Hom (DD G) c d } → (z : Hom (SC G) a b ) → scmap (g ++ f) + z ≡ scmap g + (scmap f + z)
+       distr {a} {b} {c} {f} {next {b} {d} {c} x g} z = ?
+       distr {a} {b} {b} {f} {id b} z =  ?
+       isf : IsFunctor (DD G) (SC G) ? scmap 
+       IsFunctor.identity isf = ?
+       IsFunctor.≈-cong isf refl = refl
+       IsFunctor.distr isf {a} {b} {c} {g} {f} = ?
+
+
 
 ------------------------------------------------------
 --  Cart     Category of CCC and CCC preserving Functor
--- a/CCCGraph1.agda	Thu Apr 09 09:47:00 2020 +0900
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,148 +0,0 @@
-open import Level
-open import Category 
-module CCCgraph1 where
-
-open import HomReasoning
-open import cat-utility
-open import  Relation.Binary.PropositionalEquality hiding ( [_] )
-open import CCC
-open import graph
-
-module ccc-from-graph {c₁  c₂  : Level} (G : Graph {c₁} {c₂} )  where
-   open import  Relation.Binary.PropositionalEquality hiding ( [_] )
-   open import  Relation.Binary.Core 
-   open Graph
-   
-   data Objs : Set (c₁ ⊔ c₂) where
-      atom : (vertex G) → Objs 
-      ⊤ : Objs 
-      _∧_ : Objs  → Objs  → Objs 
-      _<=_ : Objs → Objs → Objs 
-
-   data Arrow :  Objs → Objs → Set (c₁ ⊔ c₂)  where                       --- case i
-      arrow : {a b : vertex G} →  (edge G) a b → Arrow (atom a) (atom b)
-      π : {a b : Objs } → Arrow ( a ∧ b ) a
-      π' : {a b : Objs } → Arrow ( a ∧ b ) b
-      ε : {a b : Objs } → Arrow ((a <= b) ∧ b ) a
-      _* : {a b c : Objs } → Arrow (c ∧ b ) a → Arrow c ( a <= b )        --- case v
-
-   data  Arrows  : (b c : Objs ) → Set ( c₁  ⊔  c₂ ) where
-      id : ( a : Objs ) → Arrows a a                                      --- case i
-      ○ : ( a : Objs ) → Arrows a ⊤                                       --- case i
-      <_,_> : {a b c : Objs } → Arrows c a → Arrows c b → Arrows c (a ∧ b)   --- case iii
-      iv  : {b c d : Objs } ( f : Arrow d c ) ( g : Arrows b d ) → Arrows b c   -- cas iv
-
-   eval :  {a b : Objs } (f : Arrows a b ) → Arrows a b
-   eval (id a) = id a
-   eval (○ a) = ○ a
-   eval < f , f₁ > = < eval f , eval f₁ >
-   eval (iv f (id a)) = iv f (id a)
-   eval (iv f (○ a)) = iv f (○ a)
-   eval (iv π < g , h >) = eval g
-   eval (iv π' < g , h >) = eval h
-   eval (iv ε < g , h >) = iv ε < eval g , eval h >
-   eval (iv (f *) < g , h >) = iv (f *) < eval g , eval h >
-   eval (iv f (iv g h)) with eval (iv g h)
-   eval (iv f (iv g h)) | id a = iv f (id a)  
-   eval (iv f (iv g h)) | ○ a = iv f (○ a)
-   eval (iv π (iv g h)) | < t , t₁ > = t
-   eval (iv π' (iv g h)) | < t , t₁ > = t₁
-   eval (iv ε (iv g h)) | < t , t₁ > =  iv ε < t , t₁ > 
-   eval (iv (f *) (iv g h)) | < t , t₁ > = iv (f *) < t , t₁ > 
-   eval (iv f (iv g h)) | iv f1 t = iv f (iv f1 t) 
-
-   pi : {a b c : Objs} → Arrows a ( b ∧ c) → Arrows a b
-   pi (id .(_ ∧ _)) = iv π (id _)
-   pi < x , x₁ > = x
-   pi (iv f x) =  iv π (iv f x)
-
-   pi' : {a b c : Objs} → Arrows a ( b ∧ c) → Arrows a c
-   pi' (id .(_ ∧ _)) = iv π' (id _)
-   pi' < x , x₁ > = x₁
-   pi' (iv f x) =  iv π' (iv f x)
-
-   refl-<l> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c }  → < f , g > ≡ < f1 , g1 > → f ≡ f1
-   refl-<l> refl = refl
-
-   refl-<r> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c }  → < f , g > ≡ < f1 , g1 > → g ≡ g1
-   refl-<r> refl = refl
-
-   _・_ :  {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c
-   f ・ h with eval f
-   ... | id a = eval h
-   ... | ○ a = ○ _
-   ... | < f1 , g > = <  f1 ・ h  ,  g ・ h  >
-   ... | iv f1 (id _) = iv f1 h 
-   ... | iv π < g , g₁ > = ?
-   ... | iv π' < g , g₁ > = {!!} -- g₁ ・ h
-   ... | iv ε < g , g₁ > = {!!} -- iv ε < g ・ h , g₁ ・ h >
-   ... | iv (x *) < g , g₁ > = {!!} -- iv (x *) < g ・ h , g₁ ・ h > 
-   ... | iv x ( (○ a)) = iv x ( ○ _ )
-   ... | iv x f1 = {!!}
-
-   _==_  : {a b : Objs } → ( x y : Arrows a b ) → Set (c₁ ⊔ c₂)
-   _==_ {a} {b} x y   = eval x  ≡ eval  y 
-
-   identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) == f
-   identityR = {!!}
-
-   distr-e : {a b c : Objs } ( f : Arrows b c ) ( g : Arrows a b ) → eval ( f ・ g ) ≡ (eval f ・ eval g)
-   distr-e = {!!}
-
-   open import Data.Empty 
-   open import Relation.Nullary 
-
-   open import Relation.Binary.HeterogeneousEquality as HE using (_≅_;refl)
-
-   idem-eval :  {a b : Objs } (f : Arrows a b ) → eval (eval f) ≡ eval f
-   idem-eval (id a) = refl
-   idem-eval (○ a) = refl
-   idem-eval < f , f₁ > = cong₂ ( λ j k → < j , k > ) (idem-eval f) (idem-eval f₁)
-   idem-eval (iv f (id a)) = refl
-   idem-eval (iv f (○ a)) = refl
-   idem-eval (iv π < g , g₁ >) = idem-eval g
-   idem-eval (iv π' < g , g₁ >) = idem-eval g₁
-   idem-eval (iv ε < f , f₁ >) = cong₂ ( λ j k → iv ε < j , k > ) (idem-eval f) (idem-eval f₁)
-   idem-eval (iv (x *) < f , f₁ >) = cong₂ ( λ j k → iv (x *) < j , k > ) (idem-eval f) (idem-eval f₁)
-   idem-eval (iv f (iv g h)) with eval (iv g h) | idem-eval (iv g h) | inspect eval (iv g h)
-   idem-eval (iv f (iv g h)) | id a | m | _ = refl
-   idem-eval (iv f (iv g h)) | ○ a | m | _ = refl
-   idem-eval (iv π (iv g h)) | < t , t₁ > | m | _ = refl-<l> m
-   idem-eval (iv π' (iv g h)) | < t , t₁ > | m | _ = refl-<r> m
-   idem-eval (iv ε (iv g h)) | < t , t₁ > | m | _ = cong ( λ k → iv ε k ) m
-   idem-eval (iv (f *) (iv g h)) | < t , t₁ > | m | _ = cong ( λ k → iv (f *) k ) m
-   idem-eval (iv f (iv g h)) | iv f₁ t | m | record { eq = ee } = {!!}
-   -- trans lemma (cong ( λ k → iv f k ) m )  where
-   --   lemma : eval (iv f (iv f₁ t)) ≡ iv f (eval (iv f₁ t))
-   --   lemma =  std-iv f f₁ t {!!}
-
-   assoc-iv : {a b c d : Objs} (x : Arrow c d) (f : Arrows b c) (g : Arrows a b ) → eval (iv x (f ・ g)) ≡ eval (iv x f ・ g)
-   assoc-iv = {!!}
-
-
-   ==←≡ : {A B : Objs} {f g : Arrows A B} → f ≡ g → f == g
-   ==←≡ eq = cong (λ k → eval k ) eq
-
-   PL :  Category  (c₁ ⊔ c₂) (c₁ ⊔ c₂) (c₁ ⊔ c₂)
-   PL = record {
-            Obj  = Objs;
-            Hom = λ a b →  Arrows  a b ;
-            _o_ =  λ{a} {b} {c} x y → x ・ y ;
-            _≈_ =  λ x y → x  == y ;
-            Id  =  λ{a} → id a ;
-            isCategory  = record {
-                    isEquivalence =  record {refl = refl ; trans = trans ; sym = sym } ;
-                    identityL  = λ {a b f} → identityL {a} {b} {f} ; 
-                    identityR  = λ {a b f} → identityR {a} {b} {f} ; 
-                    o-resp-≈  = λ {a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i}  ; 
-                    associative  = λ{a b c d f g h } → associative  f g h
-               }
-           }  where
-               identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) == f
-               identityL = {!!}
-               associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) →
-                            (f ・ (g ・ h)) == ((f ・ g) ・ h)
-               associative = {!!}
-               o-resp-≈  : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} →
-                            f == g → h == i → (h ・ f) == (i ・ g)
-               o-resp-≈  f=g h=i = {!!}