Mercurial > hg > Members > kono > Proof > category
changeset 994:485bc7560a75
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 Mar 2021 19:11:01 +0900 |
parents | 194d4ad4efd9 |
children | 1d365952dde4 |
files | src/CCCGraph.agda |
diffstat | 1 files changed, 41 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/src/CCCGraph.agda Sat Mar 06 16:50:47 2021 +0900 +++ b/src/CCCGraph.agda Sat Mar 06 19:11:01 2021 +0900 @@ -95,17 +95,42 @@ Sets [ f ≈ f' ] → Sets [ f * ≈ f' * ] *-cong refl = refl +data II {c : Level } : Set c where + true : II + false : II --- tooos : {c : Level } → Topos (Sets {c}) sets --- tooos = record { --- Ω = {!!} --- ; ⊤ = {!!} --- ; Ker = {!!} --- ; char = {!!} --- ; isTopos = record { --- --- } --- } +data Tker {c : Level} {a : Set c} ( f : a → II {c} ) : Set c where + isTrue : (x : a ) → f x ≡ true → Tker f + +topos : {c : Level } → Topos (Sets {c}) sets +topos = record { + Ω = II + ; ⊤ = λ _ → true + ; Ker = tker + ; char = tchar + ; isTopos = record { + char-uniqueness = {!!} + ; ker-iso = {!!} + } + } where + etker : {a : Obj Sets} (h : Hom Sets a II) → Hom Sets ( Tker h ) a + etker h (isTrue x eq) = x + e-eq : {a : Obj Sets} (h : Hom Sets a II) → Sets [ Sets [ h o etker h ] ≈ Sets [ Sets [ (λ _ → true) o CCC.○ sets a ] o etker h ] ] + e-eq h = {!!} + tker : {a : Obj Sets} (h : Hom Sets a II) → Equalizer Sets h (Sets [ (λ _ → true) o CCC.○ sets a ]) + tker {a} h = record { + equalizer-c = Tker h + ; equalizer = etker h + ; isEqualizer = record { + fe=ge = e-eq h + ; k = {!!} + ; ek=h = {!!} + ; uniqueness = {!!} + } + } + tchar : {a b : Obj Sets} (m : Hom Sets b a) → Mono Sets m → Hom Sets a II + tchar {a} {b} m mono x = true + open import graph @@ -501,14 +526,12 @@ cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) (cobj {g} {c} f b) (cobj {g} {c} f a) c-map : {g : Obj (Grph )} {c : Obj Cart} {A B : Objs g} → (f : Hom Grph g (FObj UX c) ) → (fobj g A → fobj g B) → Hom (cat c) (cobj {g} {c} f A) (cobj {g} {c} f B) - --- Hom (cat c) (cobj f a) (cobj f (atom b)) - ------ g : Obj Grph - ------ c : Obj Cart - ------ a : Objs g - ------ b : V g - ------ f : Hom Grph g (uobj c) - ------ y : fobj g a → (y₁ : vertex g) → C g y₁ b - c-map {g} {c} {a} {atom b} f y = ? + --- from x to b chain. but we forgot how we come here ... + c-map {g} {c} {atom x} {atom b} f y = {!!} + --- next three cases cannot be negerated + c-map {g} {c} {⊤} {atom b} f y = {!!} + c-map {g} {c} {a ∧ a₁} {atom b} f y = {!!} + c-map {g} {c} {a <= a₁} {atom b} f y = {!!} c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a) c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f (λ k → proj₁ (z k))) (c-map f (λ k → proj₂ (z k))) c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f (λ k → x (proj₁ k) (proj₂ k)))