Mercurial > hg > Members > kono > Proof > category
changeset 120:494f870ad54b
EM Resolution complete
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 01 Aug 2013 16:46:24 +0900 |
parents | 32ef4cdb18a2 |
children | 324511654f23 |
files | em-category.agda |
diffstat | 1 files changed, 56 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/em-category.agda Thu Aug 01 15:01:31 2013 +0900 +++ b/em-category.agda Thu Aug 01 16:46:24 2013 +0900 @@ -286,17 +286,11 @@ -- μ = U^T ε U^F -- -b : Obj A -b = {!!} - -f : {a : Obj A} -> Hom A a b -f = {!!} - emap-μ : (a : Obj A) -> Hom A (FObj ( U^T ○ F^T ) (FObj ( U^T ○ F^T ) a)) (FObj ( U^T ○ F^T ) a) emap-μ a = FMap U^T ( TMap ε^T ( FObj F^T a )) -nat-μ : NTrans A A (( U^T ○ F^T ) ○ ( U^T ○ F^T )) ( U^T ○ F^T ) -nat-μ = record { TMap = emap-μ ; isNTrans = isNTrans1 } where +μ^T : NTrans A A (( U^T ○ F^T ) ○ ( U^T ○ F^T )) ( U^T ○ F^T ) +μ^T = record { TMap = emap-μ ; isNTrans = isNTrans1 } where naturality1 : {a b : Obj A} {f : Hom A a b} → A [ A [ (FMap (U^T ○ F^T) f) o ( emap-μ a) ] ≈ A [ ( emap-μ b ) o FMap (U^T ○ F^T) ( FMap (U^T ○ F^T) f) ] ] naturality1 {a} {b} {f} = let open ≈-Reasoning (A) in @@ -314,13 +308,60 @@ isNTrans1 : IsNTrans A A (( U^T ○ F^T ) ○ ( U^T ○ F^T )) ( U^T ○ F^T ) emap-μ isNTrans1 = record { naturality = naturality1 } +Lemma-EM10 : {x : Obj A } -> A [ TMap μ^T x ≈ FMap U^T ( TMap ε^T ( FObj F^T x ) ) ] +Lemma-EM10 {x} = let open ≈-Reasoning (A) in + sym ( begin + FMap U^T ( TMap ε^T ( FObj F^T x ) ) + ≈⟨⟩ + emap-μ x + ≈⟨⟩ + TMap μ^T x + ∎ ) ---open MResolution +Lemma-EM11 : {x : Obj A } -> A [ TMap μ x ≈ FMap U^T ( TMap ε^T ( FObj F^T x ) ) ] +Lemma-EM11 {x} = let open ≈-Reasoning (A) in + sym ( begin + FMap U^T ( TMap ε^T ( FObj F^T x ) ) + ≈⟨⟩ + TMap μ x + ∎ ) ---Resolution^T : MResolution A Eilenberg-MooreCategory T^U F^T {η^t} {ε^T} {μ^T} Adj_T ---Resolution^T = record { --- T=UF = Lemma-EM7; --- μ=UεF = Lemma-EM8 ---} +Adj^T : Adjunction A Eilenberg-MooreCategory U^T F^T η^T ε^T +Adj^T = record { + isAdjunction = record { + adjoint1 = adjoint1 ; + adjoint2 = adjoint2 + } + } where + adjoint1 : { b : Obj Eilenberg-MooreCategory } → + A [ A [ ( FMap U^T ( TMap ε^T b)) o ( TMap η^T ( FObj U^T b )) ] ≈ id1 A (FObj U^T b) ] + adjoint1 {b} = let open ≈-Reasoning (A) in + begin + ( FMap U^T ( TMap ε^T b)) o ( TMap η^T ( FObj U^T b )) + ≈⟨⟩ + φ b o TMap η (obj b) + ≈⟨ IsAlgebra.identity (isAlgebra b ) ⟩ + id1 A (FObj U^T b) + ∎ + adjoint2 : {a : Obj A} → + Eilenberg-MooreCategory [ Eilenberg-MooreCategory [ ( TMap ε^T ( FObj F^T a )) o ( FMap F^T ( TMap η^T a )) ] + ≈ id1 Eilenberg-MooreCategory (FObj F^T a) ] + adjoint2 {a} = let open ≈-Reasoning (A) in + begin + EMap (( TMap ε^T ( FObj F^T a )) ∙ ( FMap F^T ( TMap η^T a )) ) + ≈⟨⟩ + TMap μ a o FMap T ( TMap η a ) + ≈⟨ IsMonad.unity2 (isMonad M) ⟩ + EMap (id1 Eilenberg-MooreCategory (FObj F^T a)) + ∎ --- -- end +open MResolution + +Resolution^T : MResolution A Eilenberg-MooreCategory T U^T F^T {η^T} {ε^T} {μ^T} Adj^T +Resolution^T = record { + T=UF = Lemma-EM8; + μ=UεF = Lemma-EM11 + } + + +-- end