Mercurial > hg > Members > kono > Proof > category
changeset 523:4b097a010fd9
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 26 Mar 2017 23:17:44 +0900 |
parents | 8fd030f9f572 |
children | d6739779b4ac |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 23 insertions(+), 26 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Sun Mar 26 19:41:44 2017 +0900 +++ b/SetsCompleteness.agda Sun Mar 26 23:17:44 2017 +0900 @@ -121,10 +121,10 @@ k {d} h eq = λ x → elem (h x) ( ≡cong ( λ y → y x ) eq ) ek=h : {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} → Sets [ Sets [ (λ e → equ e ) o k h eq ] ≈ h ] ek=h {d} {h} {eq} = refl - fhy=ghy : {d : Obj Sets } { h : Hom Sets d a } {y : d } → (fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]) → f (h y) ≡ g (h y) - fhy=ghy {d} {h} {y} fh=gh = ≡cong ( λ f → f y ) fh=gh irr : {d : Set c₂ } { x y : d } ( eq eq' : x ≡ y ) → eq ≡ eq' irr refl refl = refl + injection : { c₂ : Level } {a b : Obj (Sets { c₂})} (f : Hom Sets a b) → Set c₂ + injection f = ∀ x y → f x ≡ f y → x ≡ y elm-cong : (x y : sequ a b f g) → equ x ≡ equ y → x ≡ y elm-cong ( elem x eq ) (elem .x eq' ) refl = ≡cong ( λ ee → elem x ee ) ( irr eq eq' ) lemma1 : { c₂ : Level } {a b : Obj (Sets { c₂})} {f g : Hom Sets a b} → @@ -164,28 +164,25 @@ cong1 : {A B : Obj Sets} {f g : Hom Sets A B} → Sets [ f ≈ g ] → Sets [ map (fmap f) ≈ map (fmap g) ] cong1 refl = refl - -record Slimit { c₂ } (I : Set c₂) ( sobj : I → Set c₂ ) (smap : { a b : Set c₂ } ( f : a → b ) → Set c₂ ) - : Set c₂ where - field - sm : I → I - s-t0 : (i : I ) → sobj i - -open Slimit +open IProduct --- SetsLimit : { c₂ : Level} → Limit Sets Sets Γ --- SetsLimit { c₂} = record { --- a0 = Slimit (Obj Sets) {!!} ΓMap --- ; t0 = record { --- TMap = λ i → λ lim → s-t0 lim {!!} --- ; isNTrans = record { commute = {!!} } --- } --- ; isLimit = record { --- limit = {!!} --- ; t0f=t = {!!} --- ; limit-uniqueness = {!!} --- } --- } where --- comm1 : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ FMap Γ f o (λ lim → s-t0 lim ? ) ] ≈ --- Sets [ (λ lim → s-t0 lim ?) o FMap (K Sets Sets (Slimit (Obj Sets) ΓObj (λ {a} {b} → ΓMap))) f ] ] - -- comm1 {a} {b} {f} = {!!} +SetsLimit : { c₂ : Level} → Limit Sets Sets Γ +SetsLimit { c₂} = record { + a0 = {!!} + ; t0 = record { + TMap = λ i → Sets [ proj i o e i ] + ; isNTrans = record { commute = {!!} } + } + ; isLimit = record { + limit = {!!} + ; t0f=t = {!!} + ; limit-uniqueness = {!!} + } + } where + e : (i : Obj Sets) → Hom Sets (FObj (K Sets Sets {!!}) i) (iproduct (Obj Sets) (λ I → ΓObj (Obj Sets))) + e = {!!} + proj : (i : Obj Sets) → ( prod : iproduct (Obj Sets) (λ i → ΓObj (Obj Sets) )) → FObj Γ i + proj i prod = record { obj = {!!} } + comm1 : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ FMap Γ f o (λ lim → {!!} ) ] ≈ + Sets [ (λ lim → {!!}) o FMap (K Sets Sets {!!}) f ] ] + comm1 {a} {b} {f} = {!!}