Mercurial > hg > Members > kono > Proof > category
changeset 816:4e48b331020a
simpler
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 27 Apr 2019 12:58:12 +0900 |
parents | bb9fd483f560 |
children | 177162990879 |
files | CCChom.agda |
diffstat | 1 files changed, 11 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/CCChom.agda Sat Apr 27 12:17:49 2019 +0900 +++ b/CCChom.agda Sat Apr 27 12:58:12 2019 +0900 @@ -611,13 +611,13 @@ open Graph - data Objs (G : Graph ) : Set where + data Objs (G : Graph ) : Set where -- formula atom : (vertex G) → Objs G ⊤ : Objs G _∧_ : Objs G → Objs G → Objs G _<=_ : Objs G → Objs G → Objs G - data Arrow (G : Graph ) : Objs G → Objs G → Set where + data Arrow (G : Graph ) : Objs G → Objs G → Set where --- proof arrow : {a b : vertex G} → (edge G) a b → Arrow G (atom a) (atom b) ○ : (a : Objs G ) → Arrow G a ⊤ π : {a b : Objs G } → Arrow G ( a ∧ b ) a @@ -649,16 +649,16 @@ fobj {G} (a <= b) = fobj {G} b → fobj {G} a fobj ⊤ = One' amap : {G : SM} { a b : Objs (graph G) } → Arrow (graph G) a b → fobj {G} a → fobj {G} b - amap {G} {.(atom _)} {.(atom _)} (arrow x) = smap G x - amap {G} {a} {.⊤} (○ a) _ = OneObj' - amap {G} {.(b ∧ _)} {b} π ( x , _) = x - amap {G} {.(_ ∧ b)} {b} π'( _ , x) = x - amap {G} {.((b <= _) ∧ _)} {b} ε ( f , x ) = f x - amap {G} {a} {.(_ ∧ _)} < f , g > x = (amap f x , amap g x) - amap {G} {a} {.(_ <= _)} (f *) x = λ y → amap f ( x , y ) + amap {G} (arrow x) = smap G x + amap (○ a) _ = OneObj' + amap π ( x , _) = x + amap π'( _ , x) = x + amap ε ( f , x ) = f x + amap < f , g > x = (amap f x , amap g x) + amap (f *) x = λ y → amap f ( x , y ) fmap : {G : SM} { a b : Objs (graph G) } → Hom (DX G) a b → fobj {G} a → fobj {G} b - fmap {G} {a} {a} (id a) = λ z → z - fmap {G} {a} {b} (next x f ) = Sets [ amap {G} x o fmap f ] + fmap {G} {a} (id a) = λ z → z + fmap {G} (next x f ) = Sets [ amap {G} x o fmap f ] -- CS is a map from Positive logic to Sets -- Sets is CCC, so we have a cartesian closed category generated by a graph