Mercurial > hg > Members > kono > Proof > category
changeset 499:511fd37d90ec
prove only limit preserving on co yoneda functor's obj
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 15 Mar 2017 12:28:50 +0900 |
parents | c981a2f0642f |
children | 6c993c1fe9de |
files | freyd2.agda |
diffstat | 1 files changed, 48 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd2.agda Wed Mar 15 12:10:24 2017 +0900 +++ b/freyd2.agda Wed Mar 15 12:28:50 2017 +0900 @@ -66,38 +66,64 @@ ∎ ) - -record Representable { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( U : Functor A (Sets {c₂}) ) (b : Obj A) : Set (suc ℓ ⊔ (suc (suc c₂) ⊔ suc c₁ )) where - field - -- FObj U x : A → Set - -- FMap U f = Set → Set - -- λ b → Hom (a,b) : A → Set - -- λ f → Hom (a,-) = λ b → Hom a b - - repr→ : NTrans A (Sets {c₂}) U (HomA A b ) - repr← : NTrans A (Sets {c₂}) (HomA A b) U - representable→ : {x : Obj A} → Sets [ Sets [ TMap repr→ x o TMap repr← x ] ≈ id1 (Sets {c₂}) (FObj (HomA A b) x )] - representable← : {x : Obj A} → Sets [ Sets [ TMap repr← x o TMap repr→ x ] ≈ id1 (Sets {c₂}) (FObj U x)] - -UpreseveLimit : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → ( U : Functor A (Sets {c₂}) ) (b : Obj A) +HpreseveLimit : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → (b : Obj A) { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) - ( rep : Representable A U b ) → LimitPreserve A I (Sets {c₂}) U -UpreseveLimit {_} { c₂} A U b I rep = record { + → LimitPreserve A I (Sets {c₂}) ( HomA A b ) +HpreseveLimit {_} { c₂} A b I = record { preserve = λ Γ limita → record { limit = λ a t → limitu a Γ t limita ; t0f=t = λ { a t i } → t0f=tu {a} Γ t limita {i} ; limit-uniqueness = λ { a t f } t=f → limit-uniquenessu {a} Γ limita t f t=f } } where - limitu : ( a : Obj (Sets {c₂}) ) → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( limita : Limit A I Γ ) → Hom Sets a (FObj U (a0 limita)) + limitu : ( a : Obj Sets ) → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) ((HomA A b) ○ Γ) ) → ( limita : Limit A I Γ ) → + Hom Sets a (FObj (HomA A b) (a0 limita)) limitu = {!!} - t0f=tu : { a : Obj (Sets {c₂}) } → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( limita : Limit A I Γ ) → - ∀ { i : Obj I } → Sets [ Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) U) i o limitu a Γ t limita ] ≈ TMap t i ] + t0f=tu : { a : Obj Sets } → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) ((HomA A b) ○ Γ) ) → ( limita : Limit A I Γ ) → + ∀ { i : Obj I } → Sets [ Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) (HomA A b)) i o limitu a Γ t limita ] ≈ TMap t i ] t0f=tu = {!!} - limit-uniquenessu : { a : Obj (Sets {c₂}) } → (Γ : Functor I A ) + limit-uniquenessu : { a : Obj Sets } → (Γ : Functor I A ) → ( limita : Limit A I Γ ) → - ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( f : Hom Sets a (FObj U (a0 limita)) ) - → ( ∀ { i : Obj I } → (Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) U) i o f ] ≡ TMap t i ) ) + ( t : NTrans I Sets ( K Sets I a ) ((HomA A b) ○ Γ) ) → ( f : Hom Sets a (FObj (HomA A b) (a0 limita)) ) + → ( ∀ { i : Obj I } → (Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) (HomA A b)) i o f ] ≡ TMap t i ) ) → Sets [ limitu a Γ t limita ≈ f ] limit-uniquenessu = {!!} + + +-- record Representable { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( U : Functor A (Sets {c₂}) ) (b : Obj A) : Set (suc ℓ ⊔ (suc (suc c₂) ⊔ suc c₁ )) where +-- field +-- -- FObj U x : A → Set +-- -- FMap U f = Set → Set +-- -- λ b → Hom (a,b) : A → Set +-- -- λ f → Hom (a,-) = λ b → Hom a b +-- +-- repr→ : NTrans A (Sets {c₂}) U (HomA A b ) +-- repr← : NTrans A (Sets {c₂}) (HomA A b) U +-- representable→ : {x : Obj A} → Sets [ Sets [ TMap repr→ x o TMap repr← x ] ≈ id1 (Sets {c₂}) (FObj (HomA A b) x )] +-- representable← : {x : Obj A} → Sets [ Sets [ TMap repr← x o TMap repr→ x ] ≈ id1 (Sets {c₂}) (FObj U x)] +-- +-- +-- UpreseveLimit : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → ( U : Functor A (Sets {c₂}) ) (b : Obj A) +-- { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) +-- ( rep : Representable A U b ) → LimitPreserve A I (Sets {c₂}) U +-- UpreseveLimit {_} { c₂} A U b I rep = record { +-- preserve = λ Γ limita → record { +-- limit = λ a t → limitu a Γ t limita +-- ; t0f=t = λ { a t i } → t0f=tu {a} Γ t limita {i} +-- ; limit-uniqueness = λ { a t f } t=f → limit-uniquenessu {a} Γ limita t f t=f +-- } +-- } where +-- limitu : ( a : Obj (Sets {c₂}) ) → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( limita : Limit A I Γ ) → +-- Hom Sets a (FObj U (a0 limita)) +-- limitu = {!!} +-- t0f=tu : { a : Obj (Sets {c₂}) } → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( limita : Limit A I Γ ) → +-- ∀ { i : Obj I } → Sets [ Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) U) i o limitu a Γ t limita ] ≈ TMap t i ] +-- t0f=tu = {!!} +-- limit-uniquenessu : { a : Obj (Sets {c₂}) } → (Γ : Functor I A ) +-- → ( limita : Limit A I Γ ) → +-- ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( f : Hom Sets a (FObj U (a0 limita)) ) +-- → ( ∀ { i : Obj I } → (Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) U) i o f ] ≡ TMap t i ) ) +-- → Sets [ limitu a Γ t limita ≈ f ] +-- limit-uniquenessu = {!!} +--