Mercurial > hg > Members > kono > Proof > category
changeset 77:528c7e27af91
Resolution U_T, F_T
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 26 Jul 2013 22:07:21 +0900 |
parents | 6c6c3dd8ef12 |
children | b3c023f7c929 |
files | nat.agda |
diffstat | 1 files changed, 55 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/nat.agda Fri Jul 26 20:54:41 2013 +0900 +++ b/nat.agda Fri Jul 26 22:07:21 2013 +0900 @@ -341,15 +341,67 @@ ≈-cong f≈g = (IsCategory.o-resp-≈ (Category.isCategory A)) f≈g ( lemma1 f≈g ) distr1 : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → ( ffmap (A [ g o f ]) ⋍ ( ffmap g * ffmap f ) ) - distr1 {_} {_} {_} {f} {g} = let open ≈-Reasoning (A) in + distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in begin KMap (ffmap (A [ g o f ])) - ≈⟨ {!!} ⟩ + ≈⟨⟩ + TMap η (c) o (g o f) + ≈⟨ assoc ⟩ + (TMap η (c) o g) o f + ≈⟨ car (sym (nat η)) ⟩ + (FMap T g o TMap η (b)) o f + ≈⟨ sym idL ⟩ + id1 A (FObj T c) o ((FMap T g o TMap η (b)) o f) + ≈⟨ sym (car (IsMonad.unity2 (isMonad M))) ⟩ + (TMap μ c o FMap T (TMap η c)) o ((FMap T g o TMap η (b)) o f) + ≈⟨ sym assoc ⟩ + TMap μ c o ( FMap T (TMap η c) o ((FMap T g o TMap η (b)) o f) ) + ≈⟨ cdr (cdr (sym assoc)) ⟩ + TMap μ c o ( FMap T (TMap η c) o (FMap T g o (TMap η (b) o f))) + ≈⟨ cdr assoc ⟩ + TMap μ c o ( ( FMap T (TMap η c) o FMap T g ) o (TMap η (b) o f) ) + ≈⟨ sym (cdr ( car ( distr T ))) ⟩ + TMap μ c o ( ( FMap T (TMap η c o g)) o (TMap η (b) o f)) + ≈⟨ assoc ⟩ + (TMap μ c o ( FMap T (TMap η c o g))) o (TMap η (b) o f) + ≈⟨ assoc ⟩ + ((TMap μ c o (FMap T (TMap η c o g))) o TMap η b) o f + ≈⟨ sym assoc ⟩ + (TMap μ c o (FMap T (TMap η c o g))) o (TMap η b o f) + ≈⟨ sym assoc ⟩ + TMap μ c o ( (FMap T (TMap η c o g)) o (TMap η b o f) ) + ≈⟨⟩ + join K (TMap η c o g) (TMap η b o f) + ≈⟨⟩ KMap ( ffmap g * ffmap f ) ∎ +nat-ε : NTrans KleisliCategory KleisliCategory identityFunctor ( F_T ○ U_T ) +nat-ε = record { TMap = \a -> id1 A ( FObj T a ) ; isNTrans = isNTrans } where + naturality : ? + naturality = ? + isNtrans : IsNTrans KleisliCategory KleisliCategory identityFunctor ( F_T ○ U_T ) + isNtrans = record { naturality = naturality } + +Lemma11 : {a : Obj A } -> A [ TMap μ a ≈ FMap U_T ( TMap nat-ε ( FObj F_T a ) ) ] +Lemma11 = ? + +--Lemma12 : T = F_T ○ U_T +--Lemma12 = ? + +Resoution_T : Adjunction A KleisliCategory U_T F_T η nat-ε +Resoution_T = record { + isAdjunction = record { + adjoint1 = adjoint1 ; + adjoint2 = adjoint2 + } + } where + adjoint1 : ? + adjoint1 = ? + adjoint2 : ? + adjoint2 = ? + -