Mercurial > hg > Members > kono > Proof > category
changeset 518:52d30ad7f652
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 21 Mar 2017 15:15:46 +0900 |
parents | 6f7630a255e4 |
children | 844328b49d5d |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 18 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Tue Mar 21 14:16:38 2017 +0900 +++ b/SetsCompleteness.agda Tue Mar 21 15:15:46 2017 +0900 @@ -128,6 +128,8 @@ lemma1 ( elem x eq ) (elem x' eq' ) = refl lemma2 : { e : sequ a b f g } → ( λ e → elem (equ e) (fe=ge0 e ) ) ≡ ( λ e → e ) lemma2 {e} = extensionality Sets ( λ z → lemma1 e z ) + lemma3 : {d : Obj Sets} ( e : sequ a b f g → a ) → ( y : d ) → (k' : Hom Sets d (sequ a b f g)) → f ( e (k' y) ) ≡ g ( e (k' y)) + lemma3 {d} e y k' = {!!} uniquness1 : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → ( y : d ) → Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → k h fh=gh y ≡ k' y uniquness1 {d} {h} {fh=gh} {k'} y ek'=h = @@ -137,7 +139,7 @@ elem (h y) (fhy=ghy d h y fh=gh ) ≡⟨⟩ xequ (h y ) {fhy=ghy d h y fh=gh } - ≡⟨ sym ( Category.cong (λ i → xequ (i y ) ) ek'=h ) ⟩ + ≡⟨ sym ( Category.cong (λ ek' → xequ (ek' y ) {{!!}} ) ek'=h ) ⟩ xequ ( ( λ e → equ e ) ( k' y ) ) {fe=ge0 (k' y)} ≡⟨⟩ ( λ e → xequ ( equ e ) {fe=ge0 e } ) ( k' y ) @@ -154,6 +156,21 @@ uniqueness : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh ≈ k' ] uniqueness {d} {h} {fh=gh} {k'} ek'=h = extensionality Sets ( λ y → uniquness1 {d} {h} {fh=gh}{k'} y ek'=h ) + uniqueness0 : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → + Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh ≈ k' ] + uniqueness0 {d} {h} {fh=gh} {k'} ek'=h = begin + k h fh=gh + ≈⟨ {!!} ⟩ + k ( Sets [ (λ e → equ e) o k' ] ) {!!} + ≈⟨⟩ + Sets [ ( λ e → elem (equ e) (fe=ge0 e )) o k' ] + ≈⟨ {!!} ⟩ + Sets [ ( λ e → e ) o k' ] + ≈⟨⟩ + k' + ∎ where + open ≈-Reasoning Sets + open Functor