Mercurial > hg > Members > kono > Proof > category
changeset 319:5791b7b04820
Emp in System F
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 17 Mar 2014 20:10:37 +0700 |
parents | aca05de9f056 |
children | 71158a960aa8 |
files | system-f.agda |
diffstat | 1 files changed, 10 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/system-f.agda Sun Mar 16 21:48:15 2014 +0700 +++ b/system-f.agda Mon Mar 17 20:10:37 2014 +0700 @@ -67,16 +67,20 @@ -- Emp definision is still wrong... -Emp = \{X : Set l } -> X +Emp : {l : Level} (X : Set l) -> Set l +Emp {l} = \(X : Set l) -> X -ε : {X : Set l} -> ( {Z : Set l } -> X ) -> Emp {X} -ε {U} t = t {U} +ε : {l l' : Level} (U : Set l) -> ((X : Set l) -> Emp X) -> Emp U +ε U t = t U -lemma09 : {U : Set l} -> {t : U} -> ε {U} (ε {Emp} t) ≡ ε {U} t +lemma09 : {U : Set l} -> {t : (X' : Set l) -> Emp U} -> ε U (ε Emp t) ≡ ε U t lemma09 = refl -lemma10 : {U V : Set l} -> (t : U × V ) -> π1 ( ε { U × V } t ) ≡ ε {U} t -lemma10 = ? +lemma10 : {U V : Set l} -> {t : U × V } -> π1 ( ε ( U × V ) {!!} ) ≡ ε U {!!} +lemma10 = refl + +-- lemma101 : {U V : Set l} -> {t : U × V } -> π2 ( ε {_} { U × V } t ) ≡ ε {_} {V} t +-- lemma101 = refl _+_ : Set l -> Set l -> Set (suc l) U + V = {X : Set l} -> ( U -> X ) -> (V -> X) -> X