Mercurial > hg > Members > kono > Proof > category
changeset 585:59c3de1c4043
on oging ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 11 May 2017 15:58:34 +0900 |
parents | f0f516817762 |
children | c78df4c0453c |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 20 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Thu May 11 14:49:17 2017 +0900 +++ b/SetsCompleteness.agda Thu May 11 15:58:34 2017 +0900 @@ -181,6 +181,7 @@ : Set c₂ where field slequ : ( e : OC → sproduct OC sobj ) (i j : OC) (f : I → I ) → sequ OC (sobj j) (λ x → smap f (proj (e x) i) ) (λ x → proj (e x) j ) + slprod : sproduct OC sobj open slim @@ -188,10 +189,9 @@ open NTrans Cone : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) - → ( prod : Set c₁ → sproduct (Obj C) (ΓObj s Γ) ) → ( e : Hom Sets ( slim (ΓObj s Γ) (ΓMap s Γ) ) (sproduct (Obj C) (ΓObj s Γ) ) ) → NTrans C Sets (K Sets C ( slim (ΓObj s Γ) (ΓMap s Γ))) Γ -Cone C I s Γ prod e = record { +Cone C I s Γ e = record { TMap = λ i → λ se → proj ( equ {_} { sproduct (Obj C) (ΓObj s Γ)} {FObj Γ i} {λ x → proj x i} {λ x → proj x i} (elem (e se ) refl )) i ; isNTrans = record { commute = commute1 } @@ -218,3 +218,21 @@ open ≡-Reasoning +SetsLimit : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( small : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) + → Limit Sets C Γ +SetsLimit { c₂} C I s Γ = record { + a0 = slim (ΓObj s Γ) (ΓMap s Γ) + ; t0 = Cone C I s Γ ( λ se → slprod se ) + ; isLimit = record { + limit = limit1 + ; t0f=t = λ {a t i } → {!!} + ; limit-uniqueness = λ {a t i } → {!!} + } + } where + comm2 : ( e : Hom Sets ( slim (ΓObj s Γ) (ΓMap s Γ) ) (sproduct (Obj C) (ΓObj s Γ) ) ) {i j : Obj C } ( f : I → I ) + → (p : sproduct (Obj C) (ΓObj s Γ) ) + → ΓMap s Γ f (proj p i) ≡ proj p j + comm2 e {i} {j} f p = {!!} + limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ)) + limit1 a t = λ x → record { slequ = λ e i j f → elem i {!!} + ; slprod = record { proj = λ i → TMap t i x } }