Mercurial > hg > Members > kono > Proof > category
changeset 496:5c7908202d5a
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 Mar 2017 13:37:07 +0900 |
parents | 633df882db86 |
children | e8b85a05a6b2 |
files | freyd1.agda |
diffstat | 1 files changed, 4 insertions(+), 19 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd1.agda Tue Mar 14 13:08:03 2017 +0900 +++ b/freyd1.agda Tue Mar 14 13:37:07 2017 +0900 @@ -48,16 +48,6 @@ id1 A (obj (FObj Γ x)) ∎ -Γa : { I : Category c₁ c₂ ℓ } → ( a : Obj A) → Functor I A -Γa a = record { - FObj = λ x → a ; - FMap = λ {x} {y} f → id1 A a ; - isFunctor = record { - identity = let open ≈-Reasoning (A) in refl-hom - ; distr = let open ≈-Reasoning (A) in sym ( idL ) - ; ≈-cong = λ _ → let open ≈-Reasoning (A) in refl-hom - }} where - --- Get a nat on A from a nat on CommaCategory -- NIA : { I : Category c₁ c₂ ℓ } → ( Γ : Functor I CommaCategory ) @@ -81,9 +71,6 @@ → Limit C I (G ○ (FIA Γ)) LimitC {I} comp Γ glimit = plimit glimit (climit comp (FIA Γ)) -frev : { I : Category c₁ c₂ ℓ } → (comp : Complete A I) → ( Γ : Functor I CommaCategory ) (i : Obj I ) → Hom A (limit-c comp (FIA Γ)) (obj (FObj Γ i)) -frev comp Γ i = TMap (t0 ( climit comp (FIA Γ))) i - tu : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I) → ( Γ : Functor I CommaCategory ) → NTrans I C (K C I (FObj F (limit-c comp (FIA Γ)))) (G ○ (FIA Γ)) tu {I} comp Γ = record { @@ -91,10 +78,10 @@ ; isNTrans = record { commute = λ {a} {b} {f} → commute {a} {b} {f} } } where commute : {a b : Obj I} {f : Hom I a b} → - C [ C [ FMap (G ○ (FIA Γ)) f o C [ hom (FObj Γ a) o FMap F (frev comp Γ a) ] ] - ≈ C [ C [ hom (FObj Γ b) o FMap F (frev comp Γ b) ] o FMap (K C I (FObj F (limit-c comp (FIA Γ)))) f ] ] + C [ C [ FMap (G ○ (FIA Γ)) f o C [ hom (FObj Γ a) o FMap F (TMap (t0 ( climit comp (FIA Γ))) a) ] ] + ≈ C [ C [ hom (FObj Γ b) o FMap F (TMap (t0 ( climit comp (FIA Γ))) b) ] o FMap (K C I (FObj F (limit-c comp (FIA Γ)))) f ] ] commute {a} {b} {f} = let open ≈-Reasoning (C) in begin - FMap (G ○ (FIA Γ)) f o ( hom (FObj Γ a) o FMap F (frev comp Γ a) ) + FMap (G ○ (FIA Γ)) f o ( hom (FObj Γ a) o FMap F (TMap (t0 ( climit comp (FIA Γ))) a )) ≈⟨⟩ FMap G (arrow (FMap Γ f ) ) o ( hom (FObj Γ a) o FMap F ( TMap (t0 ( climit comp (FIA Γ))) a )) ≈⟨ assoc ⟩ @@ -116,7 +103,7 @@ ≈⟨ cdr ( cdr ( IsFunctor.identity (isFunctor F) ) ) ⟩ hom (FObj Γ b) o ( FMap F (TMap (t0 ( climit comp (FIA Γ))) b) o id1 C (FObj F (limit-c comp (FIA Γ)))) ≈⟨ assoc ⟩ - ( hom (FObj Γ b) o FMap F (frev comp Γ b)) o FMap (K C I (FObj F (limit-c comp (FIA Γ)))) f + ( hom (FObj Γ b) o FMap F (TMap (t0 ( climit comp (FIA Γ))) b)) o FMap (K C I (FObj F (limit-c comp (FIA Γ)))) f ∎ limitHom : { I : Category c₁ c₂ ℓ } → (comp : Complete A I) → ( Γ : Functor I CommaCategory ) → ( glimit : LimitPreserve A I C G ) → Hom C (FObj F (limit-c comp (FIA Γ ) )) (FObj G (limit-c comp (FIA Γ) )) @@ -203,8 +190,6 @@ arrow = limit (isLimit ( climit comp (FIA Γ) ) ) (obj a ) (NIA {I} Γ a t ) ; comm = comm1 } where - tcomm : { x y : Obj I } { f : Hom I x y} → A [ A [ FMap (FIA Γ) f o TMap (NIA Γ a t) x ] ≈ A [ TMap (NIA Γ a t) y o id1 A (obj a) ] ] - tcomm {x} {y} {f} = ( IsNTrans.commute ( isNTrans t )) {x} {y} {f} comm1 : C [ C [ FMap G (limit (isLimit (climit comp (FIA Γ))) (obj a) (NIA Γ a t)) o hom a ] ≈ C [ hom (commaLimit comp Γ glimit) o FMap F (limit (isLimit (climit comp (FIA Γ))) (obj a) (NIA Γ a t)) ] ] comm1 = let open ≈-Reasoning (C) in begin