Mercurial > hg > Members > kono > Proof > category
changeset 680:5d894993477f
fh=gh done. limit from product and equalizer done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 06 Nov 2017 10:10:55 +0900 |
parents | 20bdd2f5f708 |
children | bd8f7346f252 |
files | pullback.agda |
diffstat | 1 files changed, 38 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Sun Nov 05 16:33:37 2017 +0900 +++ b/pullback.agda Mon Nov 06 10:10:55 2017 +0900 @@ -328,6 +328,9 @@ hom : Hom I hom-j hom-k open homprod +Homprod : {j k : Obj I} (u : Hom I j k) → homprod {c₁} +Homprod {j} {k} u = record {hom-j = j ; hom-k = k ; hom = u} + Fcod : homprod {c₁} → Obj A Fcod = λ u → FObj Γ ( hom-k u ) @@ -372,13 +375,13 @@ ≈⟨ assoc ⟩ ( FMap Γ u o pi (prod (FObj Γ)) j ) o e ≈↑⟨ car ( pif=q (isIProduct (prod Fcod )) ) ⟩ - ( pi (prod Fcod ) (record {hom-j = j ; hom-k = k ; hom = u} ) o g ) o e + ( pi (prod Fcod ) (Homprod u) o g ) o e ≈↑⟨ assoc ⟩ - pi (prod Fcod ) (record {hom-j = j ; hom-k = k ; hom = u} ) o (g o e ) + pi (prod Fcod ) (Homprod u) o (g o e ) ≈⟨ cdr ( fe=ge (isEqualizer (equ-ε prod eqa ))) ⟩ - pi (prod Fcod ) (record {hom-j = j ; hom-k = k ; hom = u} ) o (f o e ) + pi (prod Fcod ) (Homprod u) o (f o e ) ≈⟨ assoc ⟩ - ( pi (prod Fcod ) (record {hom-j = j ; hom-k = k ; hom = u} ) o f ) o e + ( pi (prod Fcod ) (Homprod u) o f ) o e ≈⟨ car ( pif=q (isIProduct (prod Fcod ))) ⟩ pi (prod (FObj Γ)) k o e ≈⟨⟩ @@ -404,38 +407,50 @@ } where lim : Obj A lim = equalizer-c ( equ-ε prod eqa ) + p0 : Obj A p0 = iprod (prod (FObj Γ)) + e : Hom A lim p0 e = let open ≈-Reasoning (A) in equalizer ( equ-ε prod eqa ) equ = isEqualizer ( equ-ε prod eqa ) proj = pi ( prod (FObj Γ) ) prodΓ = isIProduct ( prod (FObj Γ) ) f : Hom A p0 (iprod (prod Fcod)) - f = (iproduct (isIProduct (prod Fcod)) (λ u → pi (prod (FObj Γ)) (hom-k u ))) + f = iproduct (isIProduct (prod Fcod)) (λ u → pi (prod (FObj Γ)) (hom-k u )) g : Hom A p0 (iprod (prod Fcod)) - g = (iproduct (isIProduct (prod Fcod)) (λ u → A [ FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u ) ] )) - comm1 : (a : Obj A) → (t : NTrans I A (K A I a) Γ ) → (u : homprod) - → A [ A [ FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u) ] ≈ pi (prod (FObj Γ)) (hom-k u) ] - comm1 a t u = let open ≈-Reasoning (A) in begin - FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u) - ≈⟨ {!!} ⟩ - FMap Γ (hom u) o ( TMap t (hom-j u) o {!!} ) + g = iproduct (isIProduct (prod Fcod)) (λ u → A [ FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u ) ] ) + comm3 : (a : Obj A) → (t : NTrans I A (K A I a) Γ ) → (u : homprod {c₁} ) + → A [ A [ pi (prod Fcod) u o A [ g o iproduct prodΓ (TMap t) ] ] ≈ + A [ pi (prod Fcod) u o A [ f o iproduct prodΓ (TMap t) ] ] ] + comm3 a t u = let open ≈-Reasoning (A) in begin + pi (prod Fcod) u o ( g o iproduct prodΓ (TMap t) ) ≈⟨ assoc ⟩ - (FMap Γ (hom u) o TMap t (hom-j u) ) o {!!} - ≈⟨ car (IsNTrans.commute (isNTrans t )) ⟩ - (TMap t (hom-k u) o id1 A a ) o {!!} - ≈⟨ car idR ⟩ - TMap t (hom-k u) o {!!} - ≈⟨ {!!} ⟩ - pi (prod (FObj Γ)) (hom-k u) + ( pi (prod Fcod) u o g ) o iproduct prodΓ (TMap t) + ≈⟨ car (pif=q (isIProduct (prod Fcod ))) ⟩ + (FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u) ) o iproduct prodΓ (TMap t) + ≈↑⟨ assoc ⟩ + FMap Γ (hom u) o (pi (prod (FObj Γ)) (hom-j u) o iproduct prodΓ (TMap t) ) + ≈⟨ cdr ( pif=q prodΓ ) ⟩ + FMap Γ (hom u) o TMap t (hom-j u) + ≈⟨ IsNTrans.commute (isNTrans t) ⟩ + TMap t (hom-k u) o id1 A a + ≈⟨ idR ⟩ + TMap t (hom-k u) + ≈↑⟨ pif=q prodΓ ⟩ + pi (prod (FObj Γ)) (hom-k u) o iproduct prodΓ (TMap t) + ≈↑⟨ car (pif=q (isIProduct (prod Fcod ))) ⟩ + (pi (prod Fcod) u o f ) o iproduct prodΓ (TMap t) + ≈↑⟨ assoc ⟩ + pi (prod Fcod) u o ( f o iproduct prodΓ (TMap t) ) ∎ - comm2 : (a : Obj A) → (t : NTrans I A (K A I a) Γ ) → (u : homprod {c₁} ) - → A [ A [ FMap Γ (hom u) o TMap t (hom-j u) ] ≈ A [ TMap t (hom-k u) o id1 A a ] ] - comm2 a t u = IsNTrans.commute (isNTrans t ) fh=gh : (a : Obj A) → (t : NTrans I A (K A I a) Γ ) → A [ A [ g o iproduct prodΓ (TMap t) ] ≈ A [ f o iproduct prodΓ (TMap t) ] ] fh=gh a t = let open ≈-Reasoning (A) in begin g o iproduct prodΓ (TMap t) - ≈⟨ car ( ip-cong (isIProduct (prod Fcod)) (comm1 a t ) ) ⟩ + ≈↑⟨ ip-uniqueness (isIProduct (prod Fcod)) ⟩ + iproduct (isIProduct (prod Fcod)) (λ u → pi (prod Fcod) u o ( g o iproduct prodΓ (TMap t) )) + ≈⟨ ip-cong (isIProduct (prod Fcod)) (comm3 a t ) ⟩ + iproduct (isIProduct (prod Fcod)) (λ u → pi (prod Fcod) u o ( f o iproduct prodΓ (TMap t)) ) + ≈⟨ ip-uniqueness (isIProduct (prod Fcod)) ⟩ f o iproduct prodΓ (TMap t) ∎ limit1 : (a : Obj A) → NTrans I A (K A I a) Γ → Hom A a lim