Mercurial > hg > Members > kono > Proof > category
changeset 220:5d96be63053f
eefg
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 04 Sep 2013 18:45:17 +0900 |
parents | 2ae029454fb6 |
children | ea0407fb8f02 |
files | equalizer.agda |
diffstat | 1 files changed, 58 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Wed Sep 04 17:36:32 2013 +0900 +++ b/equalizer.agda Wed Sep 04 18:45:17 2013 +0900 @@ -231,6 +231,64 @@ A [ A [ e eqa o k' ] ≈ j ] → A [ k eqa j (fj=gj j eq) ≈ k' ] uniqueness1 = uniqueness eqa +eefeg : {a b c d : Obj A } {f g : Hom A a b } ( eqa : Equalizer A {c} f g) + → Equalizer A {c} (A [ f o e eqa ]) (A [ g o e eqa ] ) +eefeg {a} {b} {c} {d} {f} {g} eqa = record { + e = id1 A c ; -- i ; -- A [ h-1 o e eqa ] ; -- Hom A a d + ef=eg = ef=eg1 ; + k = λ j eq' → k eqa (A [ h o j ]) (fhj=ghj j eq' ) ; + ek=h = ek=h1 ; + uniqueness = uniqueness1 + } where + i = id1 A c + h = e eqa + fhj=ghj : {d' : Obj A } → (j : Hom A d' c ) → + A [ A [ A [ f o h ] o j ] ≈ A [ A [ g o h ] o j ] ] → + A [ A [ f o A [ h o j ] ] ≈ A [ g o A [ h o j ] ] ] + fhj=ghj j eq' = let open ≈-Reasoning (A) in + begin + f o ( h o j ) + ≈⟨ assoc ⟩ + (f o h ) o j + ≈⟨ eq' ⟩ + (g o h ) o j + ≈↑⟨ assoc ⟩ + g o ( h o j ) + ∎ + ef=eg1 : A [ A [ A [ f o h ] o i ] ≈ A [ A [ g o h ] o i ] ] + ef=eg1 = let open ≈-Reasoning (A) in + begin + ( f o h ) o i + ≈⟨ car ( ef=eg eqa ) ⟩ + ( g o h ) o i + ∎ + ek=h1 : {d' : Obj A} {k' : Hom A d' c} {eq' : A [ A [ A [ f o h ] o k' ] ≈ A [ A [ g o h ] o k' ] ]} → + A [ A [ i o k eqa (A [ h o k' ]) (fhj=ghj k' eq') ] ≈ k' ] + ek=h1 {d'} {k'} {eq'} = let open ≈-Reasoning (A) in + begin + i o k eqa (h o k' ) (fhj=ghj k' eq') -- h-1 (h o i ) o k eqa (h o k' ) = h-1 (h o k') + ≈⟨ idL ⟩ + k eqa (e eqa o k' ) (fhj=ghj k' eq') + ≈⟨ uniqueness eqa refl-hom ⟩ + k' + ∎ + uniqueness1 : {d' : Obj A} {h' : Hom A d' c} {eq' : A [ A [ A [ f o h ] o h' ] ≈ A [ A [ g o h ] o h' ] ]} {k' : Hom A d' c} → + A [ A [ i o k' ] ≈ h' ] → A [ k eqa (A [ h o h' ]) (fhj=ghj h' eq') ≈ k' ] + uniqueness1 {d'} {h'} {eq'} {k'} ik=h = let open ≈-Reasoning (A) in + begin + k eqa ( e eqa o h') (fhj=ghj h' eq') + ≈⟨ uniqueness eqa ( begin + e eqa o k' + ≈↑⟨ cdr idL ⟩ + e eqa o (id1 A c o k' ) + ≈⟨ cdr ik=h ⟩ + e eqa o h' + ∎ ) ⟩ + k' + ∎ + + + lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → {a b c : Obj A} (f g : Hom A a b) → ( {a b c : Obj A} → (f g : Hom A a b) → Equalizer A {c} f g ) → EqEqualizer A {c} f g