Mercurial > hg > Members > kono > Proof > category
changeset 713:5e101ee6dab9
identity done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 23 Nov 2017 18:24:44 +0900 |
parents | 9092874a0633 |
children | bc21e89cd273 |
files | monoidal.agda |
diffstat | 1 files changed, 114 insertions(+), 28 deletions(-) [+] |
line wrap: on
line diff
--- a/monoidal.agda Thu Nov 23 12:37:22 2017 +0900 +++ b/monoidal.agda Thu Nov 23 18:24:44 2017 +0900 @@ -354,6 +354,22 @@ ≡-cong = Relation.Binary.PropositionalEquality.cong + +record IsHaskellMonoidalFunctor {c₁ : Level} ( F : Functor (Sets {c₁}) (Sets {c₁}) ) + ( unit : FObj F One ) + ( φ : {a b : Obj Sets} → Hom Sets ((FObj F a) * (FObj F b )) ( FObj F ( a * b ) ) ) + : Set (suc (suc c₁)) where + isM : IsMonoidal (Sets {c₁}) One SetsTensorProduct + isM = Monoidal.isMonoidal MonoidalSets + open IsMonoidal + field + law1 : { a b c d : Obj Sets } { x : FObj F a} { y : FObj F b} { f : a → c } { g : b → d } + → FMap F (map f g) (φ (x , y)) ≡ φ (FMap F f x , FMap F g y) + law2 : { x y z : Obj Sets } { a : FObj F x } { b : FObj F y }{ c : FObj F z } + → φ (a , φ (b , c)) ≡ FMap F (Iso.≅→ (mα-iso isM)) (φ (φ (a , b) , c)) + law3 : {a : Obj Sets } { x : FObj F a } → FMap F (Iso.≅→ (mρ-iso isM)) (φ (x , unit)) ≡ x + law4 : {a : Obj Sets } { x : FObj F a } → FMap F (Iso.≅→ (mλ-iso isM)) (φ (unit , x)) ≡ x + record HaskellMonoidalFunctor {c₁ : Level} ( f : Functor (Sets {c₁}) (Sets {c₁}) ) : Set (suc (suc c₁)) where field @@ -362,8 +378,10 @@ ** : {a b : Obj Sets} → FObj f a → FObj f b → FObj f ( a * b ) ** x y = φ ( x , y ) -lemma0 : {c : Level} ( F : Functor (Sets {c}) (Sets {c}) ) → HaskellMonoidalFunctor F → MonoidalFunctor {_} {c} {_} {Sets} {Sets} MonoidalSets MonoidalSets -lemma0 F mf = record { +lemma0 : {c : Level} ( F : Functor (Sets {c}) (Sets {c}) ) → (mf : HaskellMonoidalFunctor F ) + → IsHaskellMonoidalFunctor F ( HaskellMonoidalFunctor.unit mf ) ( HaskellMonoidalFunctor.φ mf ) + → MonoidalFunctor {_} {c} {_} {Sets} {Sets} MonoidalSets MonoidalSets +lemma0 F mf ismf = record { MF = F ; ψ = λ _ → HaskellMonoidalFunctor.unit mf ; isMonodailFunctor = record { @@ -392,7 +410,7 @@ (FMap F ( f □ g ) ) (φ (x , y)) ≡⟨⟩ FMap F ( map f g ) (φ (x , y)) - ≡⟨ {!!} ⟩ + ≡⟨ IsHaskellMonoidalFunctor.law1 ismf ⟩ φ ( FMap F f x , FMap F g y ) ≡⟨⟩ φ ( ( FMap F f □ FMap F g ) (x , y) ) @@ -400,8 +418,7 @@ φ ((FMap (Functor● Sets Sets MonoidalSets F) (f , g) ) (x , y) ) ∎ where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning + open Relation.Binary.PropositionalEquality.≡-Reasoning comm0 : {a b : Obj (Sets × Sets)} { f : Hom (Sets × Sets) a b} → Sets [ Sets [ FMap (Functor⊗ Sets Sets MonoidalSets F) f o φ ] ≈ Sets [ φ o FMap (Functor● Sets Sets MonoidalSets F) f ] ] comm0 {a} {b} {f} = extensionality Sets ( λ (x : ( FObj F (proj₁ a) * FObj F (proj₂ a)) ) → comm00 x ) @@ -411,14 +428,13 @@ φ (( id1 Sets (FObj F x) □ φ ) ( ( Iso.≅→ (mα-iso isM) ) ((a , b) , c))) ≡⟨⟩ φ ( a , φ (b , c)) - ≡⟨ {!!} ⟩ + ≡⟨ IsHaskellMonoidalFunctor.law2 ismf ⟩ ( FMap F (Iso.≅→ (mα-iso isM))) (φ (( φ (a , b)) , c )) ≡⟨⟩ ( FMap F (Iso.≅→ (mα-iso isM))) (φ (( φ □ id1 Sets (FObj F f) ) ((a , b) , c))) ∎ where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning + open Relation.Binary.PropositionalEquality.≡-Reasoning comm1 : {a b c : Obj Sets} → Sets [ Sets [ φ o Sets [ (id1 Sets (FObj F a) □ φ ) o Iso.≅→ (mα-iso isM) ] ] ≈ Sets [ FMap F (Iso.≅→ (mα-iso isM)) o Sets [ φ o (φ □ id1 Sets (FObj F c)) ] ] ] @@ -428,14 +444,13 @@ FMap (m-bi MonoidalSets) (id1 Sets (FObj F a) , (λ _ → unit )) ] ] ) x ≡ Iso.≅→ (mρ-iso isM) x comm20 {a} {b} (x , OneObj ) = begin (FMap F (Iso.≅→ (mρ-iso isM))) ( φ ( x , unit ) ) - ≡⟨ {!!} ⟩ + ≡⟨ IsHaskellMonoidalFunctor.law3 ismf ⟩ x ≡⟨⟩ Iso.≅→ (mρ-iso isM) ( x , OneObj ) ∎ where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning + open Relation.Binary.PropositionalEquality.≡-Reasoning comm2 : {a b : Obj Sets} → Sets [ Sets [ FMap F (Iso.≅→ (mρ-iso isM)) o Sets [ φ o FMap (m-bi MonoidalSets) (id1 Sets (FObj F a) , (λ _ → unit )) ] ] ≈ Iso.≅→ (mρ-iso isM) ] @@ -445,40 +460,111 @@ FMap (m-bi MonoidalSets) ((λ _ → unit ) , id1 Sets (FObj F b) ) ] ] ) x ≡ Iso.≅→ (mλ-iso isM) x comm30 {a} {b} ( OneObj , x) = begin (FMap F (Iso.≅→ (mλ-iso isM))) ( φ ( unit , x ) ) - ≡⟨ {!!} ⟩ + ≡⟨ IsHaskellMonoidalFunctor.law4 ismf ⟩ x ≡⟨⟩ Iso.≅→ (mλ-iso isM) ( OneObj , x ) ∎ where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning + open Relation.Binary.PropositionalEquality.≡-Reasoning comm3 : {a b : Obj Sets} → Sets [ Sets [ FMap F (Iso.≅→ (mλ-iso isM)) o Sets [ φ o FMap (m-bi MonoidalSets) ((λ _ → unit ) , id1 Sets (FObj F b)) ] ] ≈ Iso.≅→ (mλ-iso isM) ] comm3 {a} {b} = extensionality Sets ( λ x → comm30 {a} {b} x ) -record Applicative {c₁ : Level} ( f : Functor (Sets {c₁}) (Sets {c₁}) ) + +record IsApplicative {c₁ : Level} ( f : Functor (Sets {c₁}) (Sets {c₁}) ) + ( pure : {a : Obj Sets} → Hom Sets a ( FObj f a ) ) + ( _<*>_ : {a b : Obj Sets} → FObj f ( a → b ) → FObj f a → FObj f b ) + : Set (suc (suc c₁)) where + _・_ : { a b c : Obj (Sets {c₁} ) } → (b → c) → (a → b) → a → c + _・_ f g = λ x → f ( g x ) + field + identity : { a : Obj Sets } { u : FObj f a } → pure ( id1 Sets a ) <*> u ≡ u + composition : { a b c : Obj Sets } { u : FObj f ( b → c ) } { v : FObj f (a → b ) } { w : FObj f a } + → (( pure _・_ <*> u ) <*> v ) <*> w ≡ u <*> (v <*> w) + homomorphism : { a b : Obj Sets } { f : Hom Sets a b } { x : a } → pure f <*> pure x ≡ pure (f x) + interchange : { a b : Obj Sets } { u : FObj f ( a → b ) } { x : a } → u <*> pure x ≡ pure (λ f → f x) <*> u + +record Applicative {c₁ : Level} ( F : Functor (Sets {c₁}) (Sets {c₁}) ) : Set (suc (suc c₁)) where field - pure : {a : Obj Sets} → Hom Sets a ( FObj f a ) - <*> : {a b : Obj Sets} → FObj f ( a → b ) → FObj f a → FObj f b + pure : {a : Obj Sets} → Hom Sets a ( FObj F a ) + <*> : {a b : Obj Sets} → FObj F ( a → b ) → FObj F a → FObj F b -- should have Applicative law -lemma1 : {c₁ : Level} ( f : Functor (Sets {c₁}) (Sets {c₁}) ) → Applicative f → HaskellMonoidalFunctor f -lemma1 f app = record { unit = unit ; φ = φ } +lemma1 : {c₁ : Level} ( F : Functor (Sets {c₁}) (Sets {c₁}) ) → Applicative F → HaskellMonoidalFunctor F +lemma1 F app = record { unit = unit ; φ = φ } where open Applicative - unit : FObj f One + unit : FObj F One unit = pure app OneObj - φ : {a b : Obj Sets} → Hom Sets ((FObj f a) * (FObj f b )) ( FObj f ( a * b ) ) - φ {a} {b} ( x , y ) = <*> app (FMap f (λ j k → (j , k)) x) y + φ : {a b : Obj Sets} → Hom Sets ((FObj F a) * (FObj F b )) ( FObj F ( a * b ) ) + φ {a} {b} ( x , y ) = <*> app (FMap F (λ j k → (j , k)) x) y -lemma2 : {c₁ : Level} ( f : Functor (Sets {c₁}) (Sets {c₁}) ) → HaskellMonoidalFunctor f → Applicative f -lemma2 f mono = record { pure = pure ; <*> = <*> } +lemma2 : {c₁ : Level} ( F : Functor (Sets {c₁}) (Sets {c₁}) ) → HaskellMonoidalFunctor F → Applicative F +lemma2 F mono = record { pure = pure ; <*> = <*> } where open HaskellMonoidalFunctor - pure : {a : Obj Sets} → Hom Sets a ( FObj f a ) - pure {a} x = FMap f ( λ y → x ) (unit mono) - <*> : {a b : Obj Sets} → FObj f ( a → b ) → FObj f a → FObj f b -- ** mono x y - <*> {a} {b} x y = FMap f ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b ) ) (φ mono ( x , y )) + pure : {a : Obj Sets} → Hom Sets a ( FObj F a ) + pure {a} x = FMap F ( λ y → x ) (unit mono) + <*> : {a b : Obj Sets} → FObj F ( a → b ) → FObj F a → FObj F b -- ** mono x y + <*> {a} {b} x y = FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b ) ) (φ mono ( x , y )) + +open Relation.Binary.PropositionalEquality + +HaskellMonoidal→Applicative : {c₁ : Level} ( F : Functor (Sets {c₁}) (Sets {c₁}) ) + ( unit : FObj F One ) + ( φ : {a b : Obj Sets} → Hom Sets ((FObj F a) * (FObj F b )) ( FObj F ( a * b ) ) ) + ( mono : IsHaskellMonoidalFunctor F unit φ ) + → IsApplicative F (λ x → FMap F ( λ y → x ) unit) (λ x y → FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b ) ) (φ ( x , y ))) +HaskellMonoidal→Applicative {c₁} F unit φ mono = record { + identity = identity + ; composition = composition + ; homomorphism = homomorphism + ; interchange = interchange + } + where + isM : IsMonoidal (Sets {c₁}) One SetsTensorProduct + isM = Monoidal.isMonoidal MonoidalSets + open IsMonoidal + pure : {a : Obj Sets} → Hom Sets a ( FObj F a ) + pure {a} x = FMap F ( λ y → x ) (unit ) + _<*>_ : {a b : Obj Sets} → FObj F ( a → b ) → FObj F a → FObj F b + _<*>_ {a} {b} x y = FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b ) ) (φ ( x , y )) + _・_ : { a b c : Obj (Sets {c₁} ) } → (b → c) → (a → b) → a → c + _・_ f g = λ x → f ( g x ) + identity : { a : Obj Sets } { u : FObj F a } → pure ( id1 Sets a ) <*> u ≡ u + identity {a} {u} = begin + pure ( id1 Sets a ) <*> u + ≡⟨⟩ + ( FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b )) ) ( φ ( FMap F ( λ y → id1 Sets a ) unit , u ) ) + ≡⟨ sym ( ≡-cong ( λ k → ( FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b )) ) ( φ ( FMap F ( λ y → id1 Sets a ) unit , k u ))) + ( IsFunctor.identity ( Functor.isFunctor F ) ) ) ⟩ + ( FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b )) ) ( φ ( FMap F ( λ y → id1 Sets a ) unit , FMap F (id1 Sets a) u ) ) + ≡⟨ sym ( ≡-cong ( λ k → ( FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b )) ) k ) ( IsHaskellMonoidalFunctor.law1 mono ) ) ⟩ + FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (FMap F (map (λ y → id1 Sets a) (λ x → x )) (φ (unit , u ))) + ≡⟨ ≡-cong ( λ k → k (φ (unit , u ) )) ( sym ( IsFunctor.distr ( Functor.isFunctor F ) ) ) ⟩ + FMap F (λ x → (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) ((map (λ y → id1 Sets a) (λ x → x )) x )) (φ (unit , u ) ) + ≡⟨⟩ + FMap F (λ x → proj₂ x ) (φ (unit , u ) ) + ≡⟨⟩ + FMap F (Iso.≅→ (mλ-iso isM)) (φ (unit , u )) + ≡⟨ IsHaskellMonoidalFunctor.law4 mono ⟩ + u + ∎ + where + open Relation.Binary.PropositionalEquality.≡-Reasoning + composition : { a b c : Obj Sets } { u : FObj F ( b → c ) } { v : FObj F (a → b ) } { w : FObj F a } + → (( pure _・_ <*> u ) <*> v ) <*> w ≡ u <*> (v <*> w) + composition {a} {b} {c} {u} {v} {w} = begin + ? + ≡⟨ ? ⟩ + ? + ∎ + where + open Relation.Binary.PropositionalEquality.≡-Reasoning + homomorphism : { a b : Obj Sets } { f : Hom Sets a b } { x : a } → pure f <*> pure x ≡ pure (f x) + homomorphism = {!!} + interchange : { a b : Obj Sets } { u : FObj F ( a → b ) } { x : a } → u <*> pure x ≡ pure (λ f → f x) <*> u + interchange = {!!}