Mercurial > hg > Members > kono > Proof > category
changeset 510:5eb4b69bf541
equalizer in Sets , uniquness remains
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 19 Mar 2017 11:14:49 +0900 |
parents | 3e82fb1ce170 |
children | b9c086bda3cc |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 47 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Sat Mar 18 17:35:57 2017 +0900 +++ b/SetsCompleteness.agda Sun Mar 19 11:14:49 2017 +0900 @@ -10,6 +10,13 @@ open import cat-utility open import Relation.Binary.Core open import Function +import Relation.Binary.PropositionalEquality +-- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x ) +postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ + +≡-cong = Relation.Binary.PropositionalEquality.cong + + record Σ {a} (A : Set a) (B : Set a) : Set a where constructor _,_ @@ -45,13 +52,6 @@ open iproduct -import Relation.Binary.PropositionalEquality --- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x ) -postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ - -≡-cong = Relation.Binary.PropositionalEquality.cong - - SetsIProduct : { c₂ : Level} → (I : Obj Sets) (ai : I → Obj Sets ) → IProduct ( Sets { c₂} ) I SetsIProduct I fi = record { @@ -59,7 +59,7 @@ ; iprod = iproduct I fi ; pi = λ i prod → pi1 prod i ; isIProduct = record { - iproduct = λ {q} qi x → record { pi1 = λ i → (qi i) x } + iproduct = iproduct1 ; pif=q = pif=q ; ip-uniqueness = ip-uniqueness ; ip-cong = ip-cong @@ -84,23 +84,52 @@ ip-cong {q} {qi} {qi'} qi=qi = extensionality Sets ( ipcx qi=qi ) + -- + -- e f + -- c -------→ a ---------→ b f ( f' + -- ^ . ---------→ + -- | . g + -- |k . + -- | . h + -- d -SetsEqualizer : { c₂ : Level} → {a b : Obj (Sets {c₂}) } (f g : Hom (Sets {c₂}) a b) → Equalizer Sets f g -SetsEqualizer f g = record { - equalizer-c = {!!} - ; equalizer = {!!} +data sequ {c : Level} (A B : Set c) ( f g : A → B ) : Set c where + elem : (x : A ) → (eq : f x ≡ g x) → sequ A B f g + +open sequ + +SetsEqualizer : { c₂ : Level} → (a b : Obj (Sets {c₂}) ) (f g : Hom (Sets {c₂}) a b) → Equalizer Sets f g +SetsEqualizer {c₂} a b f g = record { + equalizer-c = sequ a b f g + ; equalizer = λ e → equ e ; isEqualizer = record { - fe=ge = {!!} - ; k = {!!} - ; ek=h = {!!} - ; uniqueness = {!!} + fe=ge = fe=ge + ; k = k + ; ek=h = λ {d} {h} {eq} → ek=h {d} {h} {eq} + ; uniqueness = uniqueness } - } + } where + equ : ( sequ a b f g ) → a + equ (elem x eq) = x + fe=ge0 : (x : sequ a b f g) → (Sets [ f o (λ e → equ e) ]) x ≡ (Sets [ g o (λ e → equ e) ]) x + fe=ge0 (elem x eq ) = eq + fe=ge : Sets [ Sets [ f o (λ e → equ e ) ] ≈ Sets [ g o (λ e → equ e ) ] ] + fe=ge = extensionality Sets (fe=ge0 ) + k : {d : Obj Sets} (h : Hom Sets d a) → Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ] → Hom Sets d (sequ a b f g) + k {d} h eq = λ x → elem (h x) ( cong ( λ y → y x ) eq ) + ek=h : {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} → Sets [ Sets [ (λ e → equ e ) o k h eq ] ≈ h ] + ek=h {d} {h} {eq} = refl + uniqueness : {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → + Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h eq ≈ k' ] + uniqueness {d} refl = extensionality Sets ( λ x → {!!} ) + open Functor open NTrans + + record ΓObj { c₂ } ( I : Set c₂ ) : Set c₂ where field obj : I @@ -138,7 +167,7 @@ SetsLimit { c₂} = record { a0 = Slimit (Obj Sets) {!!} ΓMap ; t0 = record { - TMap = λ i → λ lim → s-t0 lim {!!} + TMap = λ i → λ lim → s-t0 lim {!!} ; isNTrans = record { commute = {!!} } } ; isLimit = record {