Mercurial > hg > Members > kono > Proof > category
changeset 643:5eb746702732
add more lemma
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 03 Jul 2017 12:20:26 +0900 |
parents | 53f2a11474ee |
children | 8e35703ef116 |
files | freyd2.agda |
diffstat | 1 files changed, 8 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd2.agda Mon Jul 03 08:41:01 2017 +0900 +++ b/freyd2.agda Mon Jul 03 12:20:26 2017 +0900 @@ -299,26 +299,19 @@ ; t0f=t = λ {a t i} → t0f=t0 {a} {t} {i} ; limit-uniqueness = λ {b} {t} {f} t0f=t → limit-uniqueness0 {b} {t} {f} t0f=t } where - revUub : (pi : FObj U (obj (preinitialObj PI)) ) → pi ≡ (hom (preinitialObj PI) OneObj) - revUub _ = {!!} - revU' : (a : Obj (K Sets A * ↓ U)) + lim-t0 : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) {y : Obj I} {z : Obj I} {f : Hom I y z} + → NTrans I A (K A I (a0 lim)) Γ + lim-t0 a t x {y} {z} {f} = t0 lim + lim-t0-comm : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) {y : Obj I} {z : Obj I} {f : Hom I y z} + → A [ A [ FMap Γ f o TMap (t0 lim) y ] ≈ A [ TMap (t0 lim) z o FMap (K A I (a0 lim)) f ] ] + lim-t0-comm a t x {y} {z} {f} = IsNTrans.commute (isNTrans (t0 lim)) + revU : (a : Obj (K Sets A * ↓ U)) → Sets [ Sets [ FMap U ( arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a })) ) o hom (preinitialObj PI) ] ≈ hom a ] - revU' a = let open ≈-Reasoning Sets in begin + revU a = let open ≈-Reasoning Sets in begin FMap U ( arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a }))) o hom (preinitialObj PI) ≈⟨ comm (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a })) ⟩ hom a ∎ - revU : (a : Obj (K Sets A * ↓ U)) - → Sets [ FMap U ( arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a })) ) ≈ ( λ upi → hom a OneObj ) ] - revU a = extensionality Sets ( λ (upi : FObj U (obj (preinitialObj PI)) ) → ( begin - FMap U ( arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a }))) upi - ≡⟨ {!!} ⟩ - FMap U ( arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a }))) (hom (preinitialObj PI) OneObj) - ≡⟨ ≡-cong ( λ k → k OneObj ) ( comm (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a }))) ⟩ - hom a OneObj - ∎ ) ) where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning tacomm0 : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) {y : Obj I} {z : Obj I} {f : Hom I y z} → Sets [ Sets [ FMap (U ○ Γ) f o TMap t y ] ≈ Sets [ TMap t z o FMap ( K Sets I a ) f ] ] tacomm0 a t x {y} {z} {f} = IsNTrans.commute ( isNTrans t ) {y} {z} {f}