Mercurial > hg > Members > kono > Proof > category
changeset 925:5eed22f4a75d
again ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 04 May 2020 21:13:23 +0900 |
parents | 625baac95ec8 |
children | a7332c329b57 |
files | CCCGraph.agda |
diffstat | 1 files changed, 12 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Mon May 04 15:45:20 2020 +0900 +++ b/CCCGraph.agda Mon May 04 21:13:23 2020 +0900 @@ -263,9 +263,12 @@ pε : {a c : Objs } (f : Arrows a ((atom b <= c) ∧ c)) → plcase (iv ε f) (λ y → proj₁ (fmap f y ) (proj₂ (fmap f y )) ) - rev : {a : Objs } → {b : vertex G} → ( sf : Hom CSC a (atom b)) → {f : Hom PL a (atom b)} → Hom PL a (atom b) - rev {a} {b} sf {f} with plcase f sf - ... | t = {!!} + rev : {a : Objs } → {b : vertex G} → ( sf : Hom CSC a (atom b)) → ∀{f : Hom PL a (atom b)} → FMap CS f ≡ sf → Hom PL a (atom b) + rev {atom b} {b} .(λ x → x) {id (atom b)} refl = id (atom b) + rev {a} {b} .(λ a₁ y → graphtocat.next x (fmap f₁ a₁ y)) {iv (arrow x) f₁} refl = iv (arrow x) f₁ + rev {a} {b} .(λ a₁ → proj₁ (fmap f₁ a₁)) {iv π f₁} refl = iv π f₁ + rev {a} {b} .(λ a₁ → proj₂ (fmap f₁ a₁)) {iv π' f₁} refl = iv π' f₁ + rev {a} {b} .(λ a₁ → proj₁ (fmap f₁ a₁) (proj₂ (fmap f₁ a₁))) {iv ε f₁} refl = iv ε f₁ --- @@ -434,7 +437,12 @@ cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) (cobj {g} {c} f b) (cobj {g} {c} f a) c-map : {g : Obj Grph} {c : Obj (Cart {c₁} {c₁} {c₁})} {A B : Obj (cat (csc g))} → (f : Hom Grph g (FObj UX c) ) → Hom (cat (csc g)) A B → Hom (cat c) (cobj {g} {c} f A) (cobj {g} {c} f B) - c-map {g} {c} {a} {atom x} f y = ? + c-map {g} {c} {a} {atom x} f y with ccc-from-graph.rev g y {{!!}} refl + c-map {g} {c} {atom x} {atom x} f y | id (atom x) = id1 (cat c) (cobj {g} {c} f (atom x)) + c-map {g} {c} {a} {atom x} f y | iv (arrow x₁) t = {!!} + c-map {g} {c} {a} {atom x} f y | iv π t = {!!} + c-map {g} {c} {a} {atom x} f y | iv π' t = {!!} + c-map {g} {c} {a} {atom x} f y | iv ε t = {!!} c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a) c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f (λ w → proj₁ (z w))) (c-map f (λ w → proj₂ (z w))) c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f (λ w → x (proj₁ w) (proj₂ w)))