Mercurial > hg > Members > kono > Proof > category
changeset 645:5f26af3f1c00
start adjoint
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 03 Jul 2017 16:40:34 +0900 |
parents | 8e35703ef116 |
children | 4e0f0105a85d |
files | freyd2.agda |
diffstat | 1 files changed, 34 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd2.agda Mon Jul 03 15:35:28 2017 +0900 +++ b/freyd2.agda Mon Jul 03 16:40:34 2017 +0900 @@ -374,3 +374,37 @@ ∎ ) ) where open import Relation.Binary.PropositionalEquality open ≡-Reasoning + + +FunctorF : {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) + (U : Functor A B ) + (SFS : (b : Obj B) → SmallFullSubcategory ((K B A b) ↓ U) ) + (PI : (b : Obj B) → PreInitial (K B A b ↓ U) (SFSF (SFS b))) + (LP : LimitPreserve A I B U ) + → Functor B A +FunctorF = {!!} + +nat-ε : {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) + (U : Functor A B ) + (SFS : (b : Obj B) → SmallFullSubcategory ((K B A b) ↓ U) ) + (PI : (b : Obj B) → PreInitial (K B A b ↓ U) (SFSF (SFS b))) + (LP : LimitPreserve A I B U ) + → NTrans A A ( (FunctorF A B I comp U SFS PI LP) ○ U ) identityFunctor +nat-ε = {!!} + +nat-η : {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) + (U : Functor A B ) + (SFS : (b : Obj B) → SmallFullSubcategory ((K B A b) ↓ U) ) + (PI : (b : Obj B) → PreInitial (K B A b ↓ U) (SFSF (SFS b))) + (LP : LimitPreserve A I B U ) + → NTrans B B identityFunctor (U ○ (FunctorF A B I comp U SFS PI LP) ) +nat-η = {!!} + +IsLeftAdjoint : {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) + (U : Functor A B ) + (SFS : (b : Obj B) → SmallFullSubcategory ((K B A b) ↓ U) ) + (PI : (b : Obj B) → PreInitial (K B A b ↓ U) (SFSF (SFS b))) + (LP : LimitPreserve A I B U ) + → Adjunction B A U (FunctorF A B I comp U SFS PI LP) + (nat-η A B I comp U SFS PI LP) (nat-ε A B I comp U SFS PI LP) +IsLeftAdjoint = {!!}