Mercurial > hg > Members > kono > Proof > category
changeset 272:5f2b8a5cc115
adjunction to limit
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 22 Sep 2013 21:27:03 +0900 |
parents | 28278175d696 |
children | fae4bb967d76 |
files | pullback.agda |
diffstat | 1 files changed, 31 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Sun Sep 22 20:40:17 2013 +0900 +++ b/pullback.agda Sun Sep 22 21:27:03 2013 +0900 @@ -236,6 +236,14 @@ open import Function +--------- +-- +-- limit gives co universal mapping ( i.e. adjunction ) +-- +-- F = KI I : Functor A (A ^ I) +-- U = λ b → A0 (lim b {a0 b} {t0 b} +-- ε = λ b → T0 ( lim b {a0 b} {t0 b} ) + limit2adjoint : ( lim : ( Γ : Functor I A ) → { a0 : Obj A } { t0 : NTrans I A ( K I a0 ) Γ } → Limit I Γ a0 t0 ) → ( a0 : ( b : Functor I A ) → Obj A ) ( t0 : ( b : Functor I A ) → NTrans I A ( K I (a0 b) ) b ) @@ -257,14 +265,34 @@ TMap f i -- i comes from ∀{i} → B [ TMap f i ≈ TMap g i ] ∎ couniquness2 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} {g : Hom A a (A0 (lim b {a0 b} {t0 b} ))} → - ( ∀ { i : Obj I } → - A [ A [ TMap (T0 (lim b {a0 b} {t0 b} )) i o TMap ( FMap (KI I) g) i ] ≈ TMap f i ] ) → A [ limit (lim b {a0 b} {t0 b} ) a f ≈ g ] + ( ∀ { i : Obj I } → A [ A [ TMap (T0 (lim b {a0 b} {t0 b} )) i o TMap ( FMap (KI I) g) i ] ≈ TMap f i ] ) + → A [ limit (lim b {a0 b} {t0 b} ) a f ≈ g ] couniquness2 {b} {a} {f} {g} lim-g=f = let open ≈-Reasoning (A) in begin limit (lim b {a0 b} {t0 b} ) a f ≈⟨ limit-uniqueness ( lim b {a0 b} {t0 b} ) lim-g=f ⟩ g ∎ +open import Category.Cat + +adjoint2limit : + ( U : Functor (A ^ I) A ) ( η : NTrans A A identityFunctor ( U ○ (KI I) ) ) + ( ε : NTrans (A ^ I) (A ^ I) ( (KI I) ○ U ) identityFunctor ) + ( adj : Adjunction A (A ^ I) U (KI I) η ε ) → + ( Γ : Functor I A ) → { a0 : Obj A } { t0 : NTrans I A ( K I a0 ) Γ } → Limit I Γ a0 t0 +adjoint2limit U η ε adj Γ {a0} {t0} = record { + limit = λ a t → limit1 a t ; + t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; + limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f + } where + limit1 : ( a : Obj A ) → ( t : NTrans I A ( K I a ) Γ ) → Hom A a a0 + limit1 a t = {!!} + t0f=t1 : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → ∀ { i : Obj I } → + A [ A [ TMap t0 i o limit1 a t ] ≈ TMap t i ] + t0f=t1 = {!!} + limit-uniqueness1 : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → { f : Hom A a a0 } → ( ∀ { i : Obj I } → + A [ A [ TMap t0 i o f ] ≈ TMap t i ] ) → A [ limit1 a t ≈ f ] + limit-uniqueness1 = {!!} - +