Mercurial > hg > Members > kono > Proof > category
changeset 432:688066ac172e
add another method as a comment
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 26 Mar 2016 17:18:49 +0900 |
parents | a15f52456c78 |
children | 25478a0ba66b |
files | limit-to.agda |
diffstat | 1 files changed, 54 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/limit-to.agda Sat Mar 26 15:51:30 2016 +0900 +++ b/limit-to.agda Sat Mar 26 17:18:49 2016 +0900 @@ -328,6 +328,56 @@ ≈-cong {a} {b} {f} {g} nothing | nothing | nothing = let open ≈-Reasoning (A) in refl-hom ≈-cong {a} {b} {f} {g} (just eq) | just _ | just _ = eq +-- indexFunctor' : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (none : Nil A) ( a b : Obj A) ( f g : Hom A a b ) +-- → ( obj→ : Obj A -> TwoObject {c₁} ) +-- → ( hom→ : { a b : Obj A } -> Hom A a b -> Arrow t0 t0 (obj→ a) (obj→ b) ) +-- → ( { x y : Obj A } { h i : Hom A x y } -> A [ h ≈ i ] → hom→ h ≡ hom→ i ) +-- → Functor A A +-- indexFunctor' {c₁} {c₂} {ℓ} A none a b f g obj→ hom→ hom-≡ = record { +-- FObj = λ a → fobj' a +-- ; FMap = λ {a} {b} f → fmap' {a} {b} f +-- ; isFunctor = record { +-- identity = λ{x} → identity2 {x} +-- ; distr = λ {a} {b} {c} {f} {g} → distr2 {a} {b} {c} {f} {g} +-- ; ≈-cong = λ {a} {b} {c} {f} → ≈-cong2 {a} {b} {c} {f} +-- } +-- } where +-- open ≈-Reasoning A +-- fobj' : Obj A → Obj A +-- fobj' x with obj→ x +-- fobj' x | t0 = a +-- fobj' x | t1 = b +-- fmap2 : TwoObject {c₁} → Hom A a b +-- fmap2 t0 = f +-- fmap2 t1 = g +-- fmap' : {x y : Obj A } → Hom A x y → Hom A (fobj' x) (fobj' y ) +-- fmap' {x} {y} h with obj→ x | obj→ y | hom→ h +-- fmap' {x} {y} h | t0 | t0 | id-t0 = id1 A a +-- fmap' {x} {y} h | t1 | t1 | id-t0 = id1 A b +-- fmap' {x} {y} h | t0 | t1 | arrow-f = f +-- fmap' {x} {y} h | t0 | t1 | arrow-f = g +-- fmap' {x} {y} h | _ | _ | _ = nil none +-- identity2 : {x : Obj A} → A [ fmap' ( id1 A x ) ≈ id1 A (fobj' x) ] +-- identity2 {x} with obj→ x +-- identity2 {x} | t0 = refl-hom +-- identity2 {x} | t1 = refl-hom +-- ≈-cong2 : {x : Obj A} {y : Obj A} {f1 g1 : Hom A x y} → A [ f1 ≈ g1 ] → A [ fmap' f1 ≈ fmap' g1 ] +-- ≈-cong2 {x} {y} {f1} {g1} f≈g with obj→ x | obj→ y | hom→ f1 +-- ≈-cong2 {x} {y} {f1} {g1} f≈g | t0 | t0 | _ = refl-hom +-- ≈-cong2 {x} {y} {f1} {g1} f≈g | t1 | t1 | _ = refl-hom +-- ≈-cong2 {x} {y} {f1} {g1} f≈g | t0 | t1 | t0 = begin +-- f +-- ≈⟨⟩ +-- fmap2 t0 +-- ≈⟨ ≡-cong (\x -> fmap2 x ) ( hom-≡ f≈g) ⟩ +-- fmap2 ( hom→ g1 ) +-- ∎ +-- ≈-cong2 {x} {y} {f1} {g1} f≈g | _ | _ | _ = {!!} +-- distr2 : {a₁ : Obj A} {b₁ : Obj A} {c : Obj A} {f₁ : Hom A a₁ b₁} {g₁ : Hom A b₁ c} → +-- A [ fmap' (A [ g₁ o f₁ ]) ≈ A [ fmap' g₁ o fmap' f₁ ] ] +-- distr2 {a1} {b1} {c1} {f1} {g1} with hom→ g1 | hom→ f1 +-- distr2 {a1} {b1} {c1} {f1} {g1} | _ | _ = {!!} + indexFunctor : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (none : Nil A) ( a b : Obj A) ( f g : Hom A a b ) → Functor (TwoCat {c₁} {c₂} {c₂} ) A indexFunctor {c₁} {c₂} {ℓ} A none a b f g = record { @@ -421,10 +471,10 @@ --- | / | --- |/ | Γ --- d _ | ---- |λ | ---- λ K af ---- λ -----→ ---- λ t0 t1 +--- |\ | +--- \ K af +--- \ -----→ +--- \ t0 t1 --- -----→ --- ag ---