Mercurial > hg > Members > kono > Proof > category
changeset 229:68b2681ea9df
c in equalizer is equal up to iso done.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 06 Sep 2013 11:52:41 +0900 |
parents | ff596cff8183 |
children | 1ef8c70c7054 |
files | equalizer.agda |
diffstat | 1 files changed, 23 insertions(+), 45 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Thu Sep 05 22:35:31 2013 +0900 +++ b/equalizer.agda Fri Sep 06 11:52:41 2013 +0900 @@ -392,62 +392,40 @@ c-iso-l : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) - → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) + → ( keqa : Equalizer A {c} (A [ f o e eqa' ]) (A [ g o e eqa' ]) ) → Hom A c c' -c-iso-l {c} {c'} eqa eqa' eff' eff = let open ≈-Reasoning (A) in k eff' (A [ e eqa o id1 A c ]) refl-hom +c-iso-l {c} {c'} eqa eqa' keqa = e keqa c-iso-r : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) - → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) - → Hom A c' c -c-iso-r {c} {c'} eqa eqa' eff' eff = let open ≈-Reasoning (A) in k eff (A [ e eqa' o id1 A c' ]) refl-hom + → ( keqa : Equalizer A {c} (A [ f o e eqa' ]) (A [ g o e eqa' ]) ) + → Hom A c' c +c-iso-r {c} {c'} eqa eqa' keqa = let open ≈-Reasoning (A) in k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') ) -c-iso-1 : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) - → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) - → A [ A [ e (eefeg eqa') o k (eefeg eqa') (id1 A c') (f1=g1 (fe=ge eqa') (id1 A c')) ] ≈ id1 A c' ] -c-iso-1 {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin - e (eefeg eqa') o k (eefeg eqa') (id1 A c') (f1=g1 (fe=ge eqa') (id1 A c')) - ≈⟨ ek=h ( eefeg eqa' )⟩ - id1 A c' - ∎ -c-iso-2 : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) - → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) - → A [ k eqa' ( A [ e eqa' o id1 A c' ] ) (f1=gh (fe=ge eqa' )) ≈ id1 A c' ] -c-iso-2 {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin - k eqa' ( A [ e eqa' o id1 A c' ] ) (f1=gh (fe=ge eqa' ) ) - ≈⟨ uniqueness eqa' refl-hom ⟩ - id1 A c' - ∎ - -c-iso-3 : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) - → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) - → A [ k eff' ( A [ e eff' o id1 A c' ] ) (f1=gh (fe=ge eff')) ≈ id1 A c' ] -c-iso-3 {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin - k eff' ( A [ e eff' o id1 A c' ] ) (f1=gh (fe=ge eff')) - ≈⟨ uniqueness eff' refl-hom ⟩ - id1 A c' - ∎ + -- e(eqa') f + -- c'----------> a ------->b f e j = g e j + -- ^ g + -- |k h + -- | h = e(eqaj) o k jhek = jh (uniqueness) + -- | + -- c j o (k (eqa ef ef) j ) = id c h = e(eqaj) + -- + -- h j e f = h j e g → h = 'j e f + -- h = j e f -> j = j' + -- -- e k e k = 1c e e = e -> e = 1c? -- k e k e = 1c' ? c-iso : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) - → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) - → A [ A [ c-iso-l eqa eqa' eff' eff o c-iso-r eqa eqa' eff' eff ] ≈ id1 A c' ] -c-iso {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin - c-iso-l eqa eqa' eff' eff o c-iso-r eqa eqa' eff' eff - ≈⟨⟩ - k eff' (e eqa o id1 A c) refl-hom o k eff (e eqa' o id1 A c') refl-hom - ≈⟨ car ( uniqueness eff' ( begin - e eff' o k eff' {!!} {!!} - ≈⟨ {!!} ⟩ - e eqa o id1 A c - ∎ )) ⟩ - {!!} o k eff (e eqa' o id1 A c') refl-hom - ≈⟨ {!!} ⟩ - id1 A c' - ∎ + → ( keqa : Equalizer A {c} (A [ f o e eqa' ]) (A [ g o e eqa' ]) ) + → A [ A [ c-iso-l eqa eqa' keqa o c-iso-r eqa eqa' keqa ] ≈ id1 A c' ] +c-iso {c} {c'} {a} {b} {f} {g} eqa eqa' keqa = let open ≈-Reasoning (A) in begin + c-iso-l eqa eqa' keqa o c-iso-r eqa eqa' keqa + ≈⟨ ek=h keqa ⟩ + id1 A c' + ∎ -- Equalizer is unique up to iso