Mercurial > hg > Members > kono > Proof > category
changeset 722:69f01b82dfc9
uniquness of functor fmap
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 25 Nov 2017 18:49:32 +0900 |
parents | a8b595fb4905 |
children | 40122e9c7fc9 |
files | monoidal.agda |
diffstat | 1 files changed, 21 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/monoidal.agda Sat Nov 25 16:40:17 2017 +0900 +++ b/monoidal.agda Sat Nov 25 18:49:32 2017 +0900 @@ -553,23 +553,40 @@ id x = x pure : {a : Obj Sets } → Hom Sets a ( FObj F a ) pure a = Applicative.pure mf a + UniqunessOfFunctor : {c₁ c₂ ℓ : Level} (C : Category c₁ c₂ ℓ) (F : Functor C C) + {a b : Obj C } { f : Hom C a b } → ( fmap : Hom C a b → Hom C (FObj F a) ( FObj F b) ) → C [ fmap f ≈ FMap F f ] + UniqunessOfFunctor C F {a} {b} {f} fmap = begin + fmap f + ≈⟨ {!!} ⟩ + FMap F f + ∎ + where + open ≈-Reasoning C + pure→Fid : {a b : Obj Sets } → { f : a → b } → {x : FObj F a } → FMap F id x ≡ pure id <*> x + pure→Fid {a} {b} {f} {x} = sym ( begin + pure id <*> x + ≡⟨ IsApplicative.identity ismf ⟩ + x + ≡⟨ ≡-cong ( λ k → k x ) (sym ( IsFunctor.identity (isFunctor F ) )) ⟩ FMap F id x + ∎ ) + where + open Relation.Binary.PropositionalEquality + open Relation.Binary.PropositionalEquality.≡-Reasoning pure→F : {a b : Obj Sets } → { f : a → b } → {x : FObj F a } → FMap F f x ≡ pure f <*> x pure→F {a} {b} {f} {x} = sym ( begin pure f <*> x - ≡⟨ {!!} ⟩ + ≡⟨ ≡-cong ( λ k → k x ) (UniqunessOfFunctor Sets F ( λ f x → pure f <*> x ) ) ⟩ FMap F f x ∎ ) where open Relation.Binary.PropositionalEquality open Relation.Binary.PropositionalEquality.≡-Reasoning - comm00 : {a b : Obj (Sets × Sets)} { f : Hom (Sets × Sets) a b} (x : ( FObj F (proj₁ a) * FObj F (proj₂ a)) ) → (Sets [ FMap (Functor⊗ Sets Sets MonoidalSets F) f o φ ]) x ≡ (Sets [ φ o FMap (Functor● Sets Sets MonoidalSets F) f ]) x comm00 {a} {b} {(f , g)} (x , y) = begin ( FMap (Functor⊗ Sets Sets MonoidalSets F) (f , g) ) ( φ (x , y) ) ≡⟨⟩ - FMap F (λ xy → f (proj₁ xy) , g (proj₂ xy)) ((FMap F (λ j k → j , k) x) <*> y) - ≡⟨⟩ + FMap F (λ xy → f (proj₁ xy) , g (proj₂ xy)) ((FMap F (λ j k → j , k) x) <*> y) ≡⟨⟩ FMap F (map f g) ((FMap F (λ j k → j , k) x) <*> y) ≡⟨ {!!} ⟩ (pure (map f g)) <*> ((pure (λ j k → j , k) <*> x) <*> y)