Mercurial > hg > Members > kono > Proof > category
changeset 829:6c5cfb9b333e
fix deduction theorem
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 13 Jul 2019 00:18:17 +0900 |
parents | 8127654aee5e |
children | 232cea484067 |
files | CCCGraph.agda deductive.agda |
diffstat | 2 files changed, 11 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Thu May 09 08:34:52 2019 +0900 +++ b/CCCGraph.agda Sat Jul 13 00:18:17 2019 +0900 @@ -268,7 +268,7 @@ _&_ : {v v' : Level} {x y z : Graph {v} {v'}} ( f : GMap y z ) ( g : GMap x y ) → GMap x z f & g = record { vmap = λ x → vmap f ( vmap g x ) ; emap = λ x → emap f ( emap g x ) } -Grph : {v v' : Level} → Category (suc (v ⊔ v')) (suc v ⊔ v') (suc ( v ⊔ v')) +Grph : {v v' : Level} → Category (suc (v ⊔ v')) (suc (v ⊔ v')) (suc ( v ⊔ v')) Grph {v} {v'} = record { Obj = Graph {v} {v'} ; Hom = GMap {v} {v'}
--- a/deductive.agda Thu May 09 08:34:52 2019 +0900 +++ b/deductive.agda Sat Jul 13 00:18:17 2019 +0900 @@ -27,20 +27,20 @@ -- every proof b → c with assumption a has following forms data φ {a : Obj A } ( x : Hom A ⊤ a ) : {b c : Obj A } → Hom A b c → Set ( c₁ ⊔ c₂ ) where - i : {b c : Obj A} {k : Hom A b c } → φ x k - ii : φ x {⊤} {a} x + i : {b c : Obj A} {k : Hom A b c } → φ x k + ii : φ x {⊤} {a} x iii : {b c' c'' : Obj A } { f : Hom A b c' } { g : Hom A b c'' } (ψ : φ x f ) (χ : φ x g ) → φ x {b} {c' ∧ c''} < f , g > - iv : {b c d : Obj A } { f : Hom A d c } { g : Hom A b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ・ g ) - v : {b c' c'' : Obj A } { f : Hom A (b ∧ c') c'' } (ψ : φ x f ) → φ x {b} {c'' <= c'} ( f * ) + iv : {b c d : Obj A } { f : Hom A d c } { g : Hom A b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ・ g ) + v : {b c' c'' : Obj A } { f : Hom A (b ∧ c') c'' } (ψ : φ x f ) → φ x {b} {c'' <= c'} ( f * ) α : {a b c : Obj A } → Hom A (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) ) α = < π ・ π , < π' ・ π , π' > > -- genetate (a ∧ b) → c proof from proof b → c with assumption a - kx∈a : {a b c : Obj A } → ( x : Hom A ⊤ a ) → {z : Hom A b c } → ( y : φ {a} x z ) → Hom A (a ∧ b) c - kx∈a x {k} i = k ・ π' - kx∈a x ii = π - kx∈a x (iii ψ χ ) = < kx∈a x ψ , kx∈a x χ > - kx∈a x (iv ψ χ ) = kx∈a x ψ ・ < π , kx∈a x χ > - kx∈a x (v ψ ) = ( kx∈a x ψ ・ α ) * + k : {a b c : Obj A } → ( x∈a : Hom A ⊤ a ) → {z : Hom A b c } → ( y : φ {a} x∈a z ) → Hom A (a ∧ b) c + k x∈a {k} i = k ・ π' + k x∈a ii = π + k x∈a (iii ψ χ ) = < k x∈a ψ , k x∈a χ > + k x∈a (iv ψ χ ) = k x∈a ψ ・ < π , k x∈a χ > + k x∈a (v ψ ) = ( k x∈a ψ ・ α ) *