Mercurial > hg > Members > kono > Proof > category
changeset 324:6e9bca4e67a3
R lemma
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 20 Mar 2014 10:23:54 +0700 |
parents | d22a39e155c4 |
children | c7388bb66f1c |
files | system-f.agda system-t.agda |
diffstat | 2 files changed, 23 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/system-f.agda Thu Mar 20 06:25:38 2014 +0700 +++ b/system-f.agda Thu Mar 20 10:23:54 2014 +0700 @@ -145,13 +145,27 @@ R {l} {U} u v t = π1 ( It {suc l} {U × Int} (< u , Zero >) (λ (x : U × Int) → < v (π1 x) (π2 x) , S (π2 x) > ) t ) sum : {l : Level} {X : Set l} -> Int -> Int {l} {X} -> Int -sum {l} {X} x y = R {l} {Int {l} {X}} y ( λ z -> λ w -> S z ) x +sum x y = R y ( λ z -> λ w -> S z ) x + +mul : Int -> Int -> Int +mul x y = R Zero ( λ (z : Int) -> λ (w : Int) -> sum y z ) x + +-- fact : {l : Level} {X : Set l} -> Int -> Int +-- fact {l} {X} n = R (S Zero) (λ ( z : Int) -> λ (w : Int) -> mul (S w) z ) n + +-- lemma14 : (x y : Int) -> mul x y ≡ mul y x +-- lemma14 x y = {!!} -mul : {l : Level} {X : Set l} -> Int -> Int -> Int -mul x y = R Zero ( λ (z : Int) -> λ (w : Int) -> sum y z ) x +lemma15 : {l : Level} {X : Set l} (x y : Int {l} {X}) -> mul n2 n3 ≡ mul n3 n2 +lemma15 x y = refl -fact : {l : Level} {X : Set l} -> Int -> Int -fact {l} {X} n = R (S Zero) (λ ( z : Int) -> λ (w : Int) -> mul (S w) z ) n +lemma16 : {l : Level} {X U : Set l} -> (u : U ) -> (v : U -> Int {l} {X} -> U ) -> R u v Zero ≡ u +lemma16 u v = refl + +-- lemma17 : {l : Level} {X U : Set l} -> (u : U ) -> (v : U -> Int -> U ) -> (t : Int ) -> R u v (S t) ≡ v ( R u v t ) t +-- lemma17 u v t = refl + +-- postulate lemma17 : {l : Level} {X U : Set l} -> (u : U ) -> (v : U -> Int -> U ) -> (t : Int ) -> R u v (S t) ≡ v ( R u v t ) t
--- a/system-t.agda Thu Mar 20 06:25:38 2014 +0700 +++ b/system-t.agda Thu Mar 20 10:23:54 2014 +0700 @@ -141,6 +141,10 @@ ∎ +-- lemma14 : (x y : Int) -> sum x y ≡ sum y x +-- lemma14 zero zero = refl +-- lemma14 zero (S t) = cong (\x -> S x )( lemma14 zero t) +-- lemma14 (S t) t' = cong (\x -> {!!} ) (lemma14 t t')