Mercurial > hg > Members > kono > Proof > category
changeset 517:6f7630a255e4
on going ..
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 21 Mar 2017 14:16:38 +0900 |
parents | 327dc7372729 |
children | 52d30ad7f652 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 7 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Tue Mar 21 13:42:08 2017 +0900 +++ b/SetsCompleteness.agda Tue Mar 21 14:16:38 2017 +0900 @@ -124,34 +124,26 @@ fhy=ghy d h y fh=gh = cong ( λ f → f y ) fh=gh xequ : (x : a ) → { fx=gx : f x ≡ g x } → sequ a b f g xequ x { fx=gx } = elem x fx=gx - equ→equ : sequ a b f g → sequ a b f g - equ→equ ( elem x eq ) = elem x eq - lemma1 : ( e : sequ a b f g ) → ( z : sequ a b f g ) → elem (equ z) (fe=ge0 z) ≡ equ→equ z + lemma1 : ( e : sequ a b f g ) → ( z : sequ a b f g ) → elem (equ z) (fe=ge0 z) ≡ z lemma1 ( elem x eq ) (elem x' eq' ) = refl - lemma2 : { e : sequ a b f g } → ( λ e → elem (equ e) (fe=ge0 e ) ) ≡ equ→equ + lemma2 : { e : sequ a b f g } → ( λ e → elem (equ e) (fe=ge0 e ) ) ≡ ( λ e → e ) lemma2 {e} = extensionality Sets ( λ z → lemma1 e z ) - lemma4 : ( e : sequ a b f g ) → ( z : sequ a b f g ) → equ→equ z ≡ z - lemma4 ( elem x eq ) (elem x' eq' ) = refl - lemma3 : { e : sequ a b f g } → equ→equ ≡ ( λ e → e ) - lemma3 {e} = extensionality Sets ( λ z → lemma4 e z ) - repl : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → ( y : d ) → + uniquness1 : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → ( y : d ) → Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → k h fh=gh y ≡ k' y - repl {d} {h} {fh=gh} {k'} y ek'=h = + uniquness1 {d} {h} {fh=gh} {k'} y ek'=h = begin k h fh=gh y ≡⟨⟩ elem (h y) (fhy=ghy d h y fh=gh ) ≡⟨⟩ xequ (h y ) {fhy=ghy d h y fh=gh } - ≡⟨ sym ( Category.cong (λ f → xequ (f y ) ) ek'=h ) ⟩ + ≡⟨ sym ( Category.cong (λ i → xequ (i y ) ) ek'=h ) ⟩ xequ ( ( λ e → equ e ) ( k' y ) ) {fe=ge0 (k' y)} ≡⟨⟩ - ( λ e → xequ ( equ e )) ( k' y ) + ( λ e → xequ ( equ e ) {fe=ge0 e } ) ( k' y ) ≡⟨⟩ ( λ e → elem (equ e) (fe=ge0 e )) ( k' y ) ≡⟨ Category.cong ( λ f → f ( k' y ) ) lemma2 ⟩ - equ→equ ( k' y ) - ≡⟨ Category.cong ( λ f → f ( k' y ) ) lemma3 ⟩ ( λ e → e ) ( k' y ) ≡⟨⟩ k' y @@ -161,7 +153,7 @@ open ≡-Reasoning uniqueness : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh ≈ k' ] - uniqueness {d} {h} {fh=gh} {k'} ek'=h = extensionality Sets ( λ y → repl {d} {h} {fh=gh}{k'} y ek'=h ) + uniqueness {d} {h} {fh=gh} {k'} ek'=h = extensionality Sets ( λ y → uniquness1 {d} {h} {fh=gh}{k'} y ek'=h ) open Functor