Mercurial > hg > Members > kono > Proof > category
changeset 854:75d0e039d5bc
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 04 Apr 2020 20:08:49 +0900 |
parents | efdb09dc9972 |
children | fc84b00ffd94 |
files | CCCGraph1.agda |
diffstat | 1 files changed, 27 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph1.agda Sat Apr 04 19:24:14 2020 +0900 +++ b/CCCGraph1.agda Sat Apr 04 20:08:49 2020 +0900 @@ -36,25 +36,38 @@ eval (id a) = id a eval (○ a) = ○ a eval < f , f₁ > = < eval f , eval f₁ > - eval (iv f g) with eval g - eval (iv f g) | id a = iv f (id a) - eval (iv f g) | ○ a = iv f ( ○ a ) - eval (iv π g) | < h , i > = h - eval (iv π' g) | < h , i > = i - eval (iv f g) | < h , i > = iv f < h , i > - eval (iv f g) | iv h i = iv f ( iv h i ) + eval (iv f (id a)) = iv f (id a) + eval (iv f (○ a)) = iv f (○ a) + eval (iv π < g , h >) = eval g + eval (iv π' < g , h >) = eval h + eval (iv ε < g , h >) = iv ε < eval g , eval h > + eval (iv (f *) < g , h >) = iv (f *) < eval g , eval h > + eval (iv f (iv g h)) with eval (iv g h) + eval (iv f (iv g h)) | id a = iv f (id a) + eval (iv f (iv g h)) | ○ a = iv f (○ a) + eval (iv π (iv g h)) | < t , t₁ > = t + eval (iv π' (iv g h)) | < t , t₁ > = t₁ + eval (iv f (iv g h)) | < t , t₁ > = iv f < t , t₁ > + eval (iv f (iv g h)) | iv f₁ t = iv f ( iv f₁ t ) idem-eval : {a b : Objs } (f : Arrows a b ) → eval (eval f) ≡ eval f idem-eval (id a) = refl idem-eval (○ a) = refl idem-eval < f , f₁ > = cong₂ ( λ j k → < j , k > ) (idem-eval f) (idem-eval f₁) - idem-eval (iv f g) with eval g - idem-eval (iv f g) | id a = refl - idem-eval (iv f g) | ○ a = refl - idem-eval (iv π g) | < h , i > = {!!} - idem-eval (iv π' g) | < h , i > = {!!} - idem-eval (iv f g) | < h , i > = {!!} - idem-eval (iv f g) | iv f₁ t = {!!} + idem-eval (iv f (id a)) = refl + idem-eval (iv f (○ a)) = refl + idem-eval (iv π < g , g₁ >) = idem-eval g + idem-eval (iv π' < g , g₁ >) = idem-eval g₁ + idem-eval (iv ε < f , f₁ >) = cong₂ ( λ j k → iv ε < j , k > ) (idem-eval f) (idem-eval f₁) + idem-eval (iv (x *) < f , f₁ >) = cong₂ ( λ j k → iv (x *) < j , k > ) (idem-eval f) (idem-eval f₁) + idem-eval (iv f (iv g h)) with eval (iv g h) | idem-eval (iv g h) + idem-eval (iv f (iv g h)) | id a | m = refl + idem-eval (iv f (iv g h)) | ○ a | m = refl + idem-eval (iv π (iv g h)) | < t , t₁ > | m = {!!} + idem-eval (iv π' (iv g h)) | < t , t₁ > | m = {!!} + idem-eval (iv ε (iv g h)) | < t , t₁ > | m = cong ( λ k → iv ε k ) m + idem-eval (iv (f *) (iv g h)) | < t , t₁ > | m = cong ( λ k → iv (f *) k ) m + idem-eval (iv f (iv g h)) | iv f₁ t | m = {!!} _・_ : {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c id a ・ g = eval g