Mercurial > hg > Members > kono > Proof > category
changeset 674:77690b17c5d9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 03 Nov 2017 18:59:03 +0900 |
parents | 0007f9a25e9c |
children | 1298c3655ba7 |
files | pullback.agda |
diffstat | 1 files changed, 20 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Fri Nov 03 13:31:08 2017 +0900 +++ b/pullback.agda Fri Nov 03 18:59:03 2017 +0900 @@ -320,6 +320,20 @@ -- Γ f o ε i = ε j -- +equ-to : {a b : Obj A} {f g : Hom A a b} + → (e0 : Equalizer A (Id {_} {_} {_} {A} a) (Id {_} {_} {_} {A} a)) + → (e1 : Equalizer A f g ) + → Hom A ( equalizer-c e1 ) ( equalizer-c e0 ) +equ-to {a} {b} e0 e1 = k (isEqualizer e0) (equalizer e1 ) refl-hom + where open ≈-Reasoning (A) + +equ-to' : {a b : Obj A} {f g : Hom A a b} + → (e0 : Equalizer A (Id {_} {_} {_} {A} a) (Id {_} {_} {_} {A} a)) + → (e1 : Equalizer A f g ) + → Hom A ( equalizer-c e0 ) ( equalizer-c e1 ) +equ-to' {a} {b} e0 e1 = k (isEqualizer e1) (equalizer e0) {!!} + where open ≈-Reasoning (A) + equc : ( prod : ( ai : Obj I → Obj A ) → IProduct A (Obj I) ai ) ( eqa : {a b : Obj A} → (f g : Hom A a b) → Equalizer A f g ) → Obj A @@ -340,8 +354,10 @@ TMap = λ i → tmap i ; isNTrans = record { commute = commute1 } } where + lim : Obj A lim = equc prod eqa p0 = iprod (prod (FObj Γ)) + e : Hom A lim p0 e = let open ≈-Reasoning (A) in equalizer ( eqa (id1 A p0 ) ( id1 A p0 ) ) proj = pi ( prod (FObj Γ) ) tmap : (i : Obj I) → Hom A (FObj (K A I lim) i) (FObj Γ i) @@ -354,8 +370,11 @@ FMap Γ f o ( proj i o e ) ≈⟨ assoc ⟩ ( FMap Γ f o proj i ) o e - -- ≈⟨ fe=ge (isEqualizer (eqa (FMap Γ f o proj i) ( proj j ))) ⟩ ≈⟨ {!!} ⟩ + ( ( FMap Γ f o proj i ) o (equalizer (eqa (FMap Γ f o proj i) ( proj j )))) o (( equ-to' (eqa (id1 A p0)(id1 A p0)) (eqa (FMap Γ f o proj i) ( proj j ))) o k (isEqualizer (eqa (id1 A p0) (id1 A p0) )) (iproduct (isIProduct (prod (FObj Γ))) ({!!})) refl-hom ) + ≈⟨ car (fe=ge (isEqualizer (eqa (FMap Γ f o proj i) ( proj j )))) ⟩ + ( proj j o (equalizer (eqa (FMap Γ f o proj i) ( proj j )))) o {!!} + ≈⟨ {!!} ⟩ proj j o e ≈↑⟨ idR ⟩ (proj j o e ) o id1 A lim