Mercurial > hg > Members > kono > Proof > category
changeset 1026:7916bde5e57b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Mar 2021 21:25:32 +0900 |
parents | 49fbc57ea772 |
children | 5ae0290c34b4 |
files | src/CCCSets.agda |
diffstat | 1 files changed, 16 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/CCCSets.agda Mon Mar 29 19:55:41 2021 +0900 +++ b/src/CCCSets.agda Mon Mar 29 21:25:32 2021 +0900 @@ -168,6 +168,8 @@ ... | case2 n = n im img-x : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → {y : a} → image m y → b img-x m {.(m x)} (isImage x) = x + m-img-x : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → {y : a} → (t : image m y ) → m (img-x m t) ≡ y + m-img-x m (isImage x) = refl open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) img-cong : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → (mono : Mono Sets m ) → (y y' : a) → y ≡ y' → (s : image m y ) (t : image m y') → s ≅ t img-cong {a} {b} m mono .(m x) .(m x₁) eq (isImage x) (isImage x₁) @@ -181,7 +183,7 @@ img-x-cong0 m mono y s t = img-x-cong m mono y y refl s t isol : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → (mono : Mono Sets m ) → IsoL Sets m (λ (e : sequ a Bool (tchar m mono) (λ _ → true )) → equ e ) isol {a} {b} m mono = record { iso-L = record { ≅→ = b→s ; ≅← = b←s ; - iso→ = Mono.isMono mono (Sets [ b←s o b→s ]) (id1 Sets _) ( extensionality Sets ( λ x → iso1 x )) + iso→ = extensionality Sets ( λ x → iso1 x ) ; iso← = extensionality Sets ( λ x → iso2 x) } ; iso≈L = {!!} } where b→s : Hom Sets b (sequ a Bool (tchar m mono) (λ _ → true)) b→s x with tchar m mono (m x) | inspect (tchar m mono ) (m x) @@ -192,16 +194,21 @@ b←s (elem y eq) with tchar m mono y | inspect (tchar m mono ) y ... | true | record { eq = eq1 } = img-x m (tcharImg m mono y eq1 ) bs=x : (x : b) → (y : a) → y ≡ m x → (eq : tchar m mono y ≡ true ) → b←s (elem y eq) ≡ x - bs=x x y refl t with tcharImg m mono y t + bs=x x y refl eq1 with tcharImg m mono y eq1 ... | t1 = {!!} - iso1 : (x : b) → ( Sets [ m o (Sets Category.o b←s) b→s ] ) x ≡ ( Sets [ m o Category.Category.Id Sets ] ) x + b←s0 : (x : b) → sequ a Bool (tchar m mono) (λ _ → true) → image m (m x) + b←s0 x (elem x₁ eq) with lem (image m (m x)) + ... | case1 t = t + ... | case2 n = ⊥-elim ( n (isImage x)) + iso1 : (x : b) → b←s ( b→s x ) ≡ x iso1 x with tchar m mono (m x) | inspect (tchar m mono ) (m x) - ... | true | record { eq = eq1 } = begin - m ( b←s ( elem (m x) eq1 )) ≡⟨⟩ - m (img-x m (isImage (b←s ( elem (m x) eq1 )) )) ≡⟨ {!!} ⟩ - m (img-x m (tcharImg m mono (m x) eq1 ) ) ≡⟨ {!!} ⟩ - m (img-x m (isImage x) ) ≡⟨⟩ - m x ∎ where open ≡-Reasoning + ... | true | record { eq = eq1 } with tcharImg m mono (m x) eq1 | inspect ( tcharImg m mono (m x) ) eq1 + ... | t | record { eq = eq2 } = begin + b←s ( elem (m x) eq1 ) ≡⟨ {!!} ⟩ + img-x m (tcharImg m mono (m x) eq1 ) ≡⟨ cong (λ k → img-x m k ) eq2 ⟩ + img-x m t ≡⟨ img-x-cong0 m mono (m x ) t (isImage x) ⟩ + img-x m (isImage x) ≡⟨⟩ + x ∎ where open ≡-Reasoning iso1 x | false | record { eq = eq1 } = ⊥-elim ( tchar¬Img m mono (m x) eq1 (isImage x)) iso2 : (x : sequ a Bool (tchar m mono) (λ _ → true) ) → (Sets [ b→s o b←s ]) x ≡ id1 Sets (sequ a Bool (tchar m mono) (λ _ → true)) x iso2 (elem y eq) = {!!}